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Introduction

In this Supplementary Appendix, extensions, proofs and applications referred to in Bag-
well (2018) are developed.

Elimination of never weak best response strategies

Suppose that we have an outcome that is generated by a sequential equilibrium for the
game with private resolve as defined in Section 3.2. Consider the set of all sequential
equilibria in this game giving rise to this outcome. We allow for mixed-strategy equi-
libria under the restriction that the distribution over actions is discrete and has positive
support.1 In such equilibria, the flexible Firm 1 randomizes with respect to its leader
quantity. The final outputs of the flexible Firm 1 and Firm 2 are not randomized in
equilibrium, given concavity as delivered by (1). Indeed, in any sequential equilibrium,
for any given qL1 ∈ Q1, the flexible Firm 1 selects q∗1(q

L
1 , b) and Firm 2 selects q∗2(q

L
1 , b)

for some belief b = b(qL1 ). Allowing for mixed-strategy sequential equilibria under the
restriction just described, let us abuse notation somewhat and define Π1(t) as the payoff
for type t ∈ {R,F} in the sequential equilibrium outcome under consideration.
We consider two cases. Assume first that there exists a leader quantity qL1 ∈ Q1

that is off the equilibrium path (i.e., selected with zero probability) for all sequential
equilibria in the set under consideration and that satisfies DF (qL1 ) ∪ DF

0 (qL1 ) v DR(qL1 )

and DR(qL1 ) 6= ∅. For present purposes, let us call a leader quantity that satisfies these
assumptions the “deviant qL1 .”
Let us suppose that the flexible Firm 1 has a strategy in which the deviant qL1 is played

with positive probability and that is a weak best response to some sequential equilibrium
in the set under consideration. Fix this strategy and sequential equilibrium. For this
sequential equilibrium, Firm 2’s strategy must of course specify a response q2(qL1 ) to the
deviant qL1 ; in particular, we know from above that there exists b′ ∈ [0, 1] such that
q2(q

L
1 ) = q∗2(q

L
1 , b
′). If as part of this strategy the flexible Firm 1 were to select q1(qL1 ) 6=

q∗1(q
L
1 , b
′), where q∗1(q

L
1 , b
′) = qbr1 (q∗2(q

L
1 , b
′)) by (9), then the flexible Firm 1 could do better

yet with an alternative strategy that couples the deviant qL1 with q1(q
L
1 ) = q∗1(q

L
1 , b
′),

as then the flexible Firm 1 would be selecting its best response to Firm 2’s selection,
q2(q

L
1 ) = q∗2(q

L
1 , b
′). Since by hypothesis the fixed strategy for the flexible Firm 1 is a weak

best response to the given sequential equilibrium, the alternative strategy would generate
a gain from deviation. Thus, the existence of the given sequential equilibrium requires that
q1(q

L
1 ) = q∗1(q

L
1 , b
′) in the fixed strategy under consideration. Our supposition is thus that,

for the flexible Firm 1, we have fixed a strategy that selects the deviant qL1 with positive

1Mixed-strategy equilibria are discussed further in the next section of this Supplementary Appendix.
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probability, that follows the selection of the deviant qL1 with q1(q
L
1 ) = q∗1(q

L
1 , b
′), and that is

a weak best response to the given sequential equilibrium. This supposition in turn ensures
that b′ ∈ DF (qL1 ) ∪ DF

0 (qL1 ). Recall now that, for the deviant qL1 , D
F (qL1 ) ∪ DF

0 (qL1 ) v
DR(qL1 ). It thus follows that b′ ∈ DR(qL1 ). We can now conclude that the resolute Firm 1
would deviate and select the deviant qL1 followed by q1(q

L
1 ) = q∗1(q

L
1 , b
′), which contradicts

the existence of the given sequential equilibrium. Hence, for the deviant qL1 , it must
be that any strategy for the flexible Firm 1 that includes the deviant qL1 with positive
probability is never a weak best response to any sequential equilibrium in the given set.
For the given set of sequential equilibria, suppose now that we prune strategies for Firm

1 in the game with private resolve that are never a weak best response to any sequential
equilibrium in the given set. Since the deviant qL1 satisfies D

F (qL1 ) ∪ DF
0 (qL1 ) v DR(qL1 ),

we argue above that it must be that any strategy that entails selecting qL1 with positive
probability is never a weak best response for the flexible Firm 1. Given that the deviant qL1
also satisfiesDR(qL1 ) 6= ∅, we can easily argue that a strategy that selects the deviant qL1 is
a weak best response for the resolute Firm 1 to some sequential equilibrium in the given set.
Hence, in any sequential equilibrium that generates the given outcome in the game after
never weak best responses for Firm 1 are removed, we must have that b(qL1 ) = 1. In other
words, for any leader quantity qL1 ∈ Q1 that is off the equilibrium path for all sequential
equilibria leading to a given outcome, if DF (qL1 ) ∪ DF

0 (qL1 ) v DR(qL1 ) and DR(qL1 ) 6= ∅,
then the sequential equilibrium outcome exists after never-weak-best-response strategies
are pruned for the flexible Firm 1 only if the associated beliefs satisfy b(qL1 ) = 1. For pure-
strategy sequential equilibria, we may directly transfer this implication to the reduced-
form game defined in the paper and impose that, for any leader quantity qL1 ∈ Q1 that is
off the equilibrium path in all equilibria leading to a given outcome, if DF (qL1 )∪DF

0 (qL1 ) v
DR(qL1 ) and DR(qL1 ) 6= ∅, then b(qL1 ) = 1 is required. We observe that this requirement
matches exactly the requirement imposed by our refinement in (22) for the case of t = F

and t′ = R. An analogous argument holds in mixed-strategy equilibria wherein the flexible
Firm 1 randomizes over leader quantities, given the restriction mentioned above.
We turn now to the second case, which is more straightforward. For this case, we

assume that there exists a leader quantity qL1 ∈ Q1 that is off the equilibrium path (i.e.,
selected with zero probability) for all sequential equilibria in the set under consideration
and that satisfies DR(qL1 ) ∪ DR

0 (qL1 ) v DF (qL1 ) and DF (qL1 ) 6= ∅. Focusing now on this
second case, let us call a leader quantity that satisfies these assumptions the “deviant qL1 .”
Let us suppose that the resolute Firm 1 has a strategy in which the deviant qL1 is

played with positive probability and that is a weak best response to some sequential
equilibrium in the set under consideration. Fix this strategy and sequential equilibrium.
As before, for this sequential equilibrium, Firm 2’s strategy must specify a response q2(qL1 )

to the deviant qL1 ; in particular, we know from above that there exists b
′ ∈ [0, 1] such that
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q2(q
L
1 ) = q∗2(q

L
1 , b
′). For the resolute Firm 1, if it selects the deviant qL1 as its leader

quantity, then the deviant qL1 is also its final output. Our supposition is thus that, for
the resolute Firm 1, we have fixed a strategy in which the deviant qL1 is selected with
positive probability and that is a weak best response to the given sequential equilibrium.
This supposition in turn ensures that b′ ∈ DR(qL1 ) ∪ DR

0 (qL1 ). Recall now that, for the
deviant qL1 , D

R(qL1 ) ∪ DR
0 (qL1 ) v DF (qL1 ). It thus follows that b′ ∈ DF (qL1 ). We can now

conclude that the flexible Firm 1 would deviate and select the deviant qL1 followed by
q1(q

L
1 ) = q∗1(q

L
1 , b
′), which contradicts the existence of the given sequential equilibrium.

Hence, for the deviant qL1 , it must be that any strategy for the resolute Firm 1 that
includes the deviant qL1 with positive probability is never a weak best response to any
sequential equilibrium in the given set.
For the given set of sequential equilibria, suppose now that we prune strategies for Firm

1 in the game with private resolve that are never a weak best response to any sequential
equilibrium in the given set. Since the deviant qL1 satisfies D

R(qL1 ) ∪ DR
0 (qL1 ) v DF (qL1 ),

we argue above that it must be that any strategy that entails selecting qL1 with positive
probability is never a weak best response for the resolute Firm 1. Given that the deviant qL1
also satisfiesDF (qL1 ) 6= ∅, we can easily argue that a strategy that selects the deviant qL1 is
a weak best response for the flexible Firm 1 to some sequential equilibrium in the given set.
Hence, in any sequential equilibrium that generates the given outcome in the game after
never weak best responses for Firm 1 are removed, we must have that b(qL1 ) = 0. In other
words, for any leader quantity qL1 ∈ Q1 that is off the equilibrium path in all sequential
equilibria leading to a given outcome, if DR(qL1 ) ∪ DR

0 (qL1 ) v DF (qL1 ) and DF (qL1 ) 6= ∅,
then the sequential equilibrium outcome exists after never-weak-best-response strategies
are pruned for Firm 1 only if the associated beliefs satisfy b(qL1 ) = 0. For pure-strategy
sequential equilibria, we may directly transfer this implication to the reduced-form game
defined in the text and impose that, for any leader quantity qL1 ∈ Q1 that is off the
equilibrium path for all equilibria leading to a given outcome, if DR(qL1 ) ∪ DR

0 (qL1 ) v
DF (qL1 ) and DF (qL1 ) 6= ∅, then b(qL1 ) = 0 is required. We observe that this requirement
matches exactly the requirement imposed by our refinement in (22) for the case of t = R

and t′ = F . An analogous argument holds in mixed-strategy equilibria wherein the flexible
Firm 1 randomizes over leader quantities, given the restriction mentioned above.

Refined mixed-strategy equilibria

We characterize here the mixed-strategy sequential equilibria for the game with private
resolve as defined in Section 3.2. The sequential equilibrium concept is defined for games
with finite action spaces, and the D1 refinement is likewise defined for finite signaling
games. We analyze here a game with a continuum of actions. The definitions extend in
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natural ways when players use pure strategies, as shown in Sections 4 and 5. Our approach
is to restrict attention to mixed strategies in which the distribution over actions is discrete
and has finite support. A mixed strategy for a player then indicates the probability that
the player will select a given action in the support. The Bayes’consistency requirement of
sequential equilibrium determines beliefs for actions that occur with positive probability
in a proposed mixed-strategy equilibrium. We apply the refinement when actions are
observed that are zero-probability events under the proposed mixed-strategy equilibrium.
To begin, we note that, given the concavity of the profit functions as captured in

(1), the flexible Firm 1 and Firm 2 do not randomize in equilibrium with respect to their
selections of period-2 quantities. Any randomization thus must involve the leader quantity
choices of the resolute and flexible Firm 1. We can thus embed the period-2 equilibrium
quantities into the payoff functions and consider the reduced-form game. The definition of
equilibrium is then modified to allow that Firm 1 of type t may randomize over different
leader quantities that maximize its payoff, where beliefs are formed via Bayes’rule for
leader quantities that arise with positive probability under the equilibrium strategies and
where the equilibrium strategies now may be mixed. We will say that an equilibrium
so defined is a mixed-strategy equilibrium if there exists a type t of Firm 1 such that its
equilibrium strategy places positive probability on more than one leader quantity. We
now develop our characterizations through a sequence of observations.
A first observation is that there does not exist a mixed-strategy equilibrium in which

qL1 < qN1 is selected by the resolute Firm 1 with positive probability.
The proof follows arguments made in the proof of Proposition 6. Suppose to the

contrary that a mixed-strategy equilibrium exists in which the resolute Firm 1 selects
qL1 < qN1 with positive probability, so that b(qL1 ) > 0. If b(qL1 ) = 1, then we can argue
similarly to the discussion leading up to Proposition 5 that the resolute Firm 1 would gain
by reallocating the probability it plays qL1 from qL1 to q

N
1 . Suppose then that b(q

L
1 ) ∈ (0, 1).

Lemma 1 then gives qL1 < q∗1(q
L
1 , b(q

L
1 )) < qN1 and q

N
2 < q∗2(q

L
1 , b(q

L
1 )) < qbr2 (qL1 ). Since the

resolute Firm 1 must be indifferent over all leader quantities that are selected with positive
probability, its equilibrium profit level must be given by π1(qL1 , q

∗
2(q

L
1 , b(q

L
1 ))). From here,

we can follow the proof of Proposition 6 to conclude that π1(qL1 , q
∗
2(q

L
1 , b(q

L
1 ))) < πN1 .

Since the resolute Firm 1 can always deliver the profit πN1 by selecting q
N
1 , we thus have

a contradiction, and so the first observation is established.
Second, we suppose that a mixed-strategy equilibrium exists in which the flexible

Firm 1 places positive probability on more than one leader quantity. Let qLm1 and qLn1
denote any two distinct leader quantities that are selected with positive probability by
the flexible Firm 1 in a mixed-strategy equilibrium. Since the flexible Firm 1 must be
indifferent between any leader quantities that it selects with positive probability, and since
the flexible Firm 1 ultimately chooses its period-2 equilibrium quantity as a best response
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to Firm 2’s period-2 equilibrium quantity, we conclude from (9) and (16) that qLm1 and
qLn1 must generate the same period-2 equilibrium quantity from Firm 2: q∗2(q

Lm
1 , b(qLm1 )) =

q∗2(q
Ln
1 , b(qLn1 )).
Third, we claim that a refined mixed-strategy equilibrium does not exist in which the

flexible Firm 1 employs a mixed strategy and earns a payoff greater than its Nash payoff,
πN1 . To establish this claim, suppose to the contrary that a mixed-strategy equilibrium
exists in which the flexible Firm 1 randomizes and earns a payoff greater than πN1 . Since
the flexible Firm 1 must be indifferent with respect to all leader quantities that it selects
with positive probability, and since the flexible Firm 1 is sure to earn πN1 if it selects the
Nash leader quantity, qN1 , the flexible Firm 1 must not select q

N
1 with positive probability.

Hence, the flexible Firm 1 must randomize over at least two leader quantities, with each
such leader quantity differing from qN1 . We also know that, for any leader quantity that
the flexible Firm 1 selects with positive probability, the resolute Firm 1 must also choose
this leader quantity with positive probability; otherwise, the flexible Firm 1 would be
revealed when choosing this leader quantity and thus earn πN1 , which contradicts our
initial assumption.
With these observations in hand, we may now conclude that the flexible Firm 1 selects

at most two leader quantities with positive probability. This follows since the resolute
Firm 1 must select with positive probability any leader quantity that the flexible Firm 1
selects with positive probability, Firm 2’s period-2 equilibrium quantity must be constant
in response to such quantities as we know from our second observation, and the resolute
Firm 1’s profit function is concave by (1) and thus has at most two leader quantities that
deliver a fixed profit level when Firm 2’s period-2 equilibrium quantity is held constant.
Our assumption is that these two leader quantities exist. Let us denote them as qLm1
and qLn1 , where qLm1 > qLn1 . Since these leader quantities must differ from qN1 , we may
conclude from our first observation that qLm1 > qLn1 > qN1 . We also know that the resolute
leader cannot choose any leader quantity just below qLm1 with positive probability, since
otherwise the flexible Firm 1 would deviate to the slightly lower leader quantity and
generate a lower period-2 equilibrium quantity from Firm 2 by inducing the belief that
Firm 1 is the resolute type.
Let us thus suppose that there exists a mixed-strategy equilibrium in which there are

two distinct leader quantities, qLm1 and qLn1 with qLm1 > qLn1 > qN1 , such that each is selected
with positive probability both by the flexible Firm 1 and the resolute Firm 1 where the
probability that the flexible Firm 1 selects qLm1 or qLn1 is one. Given q∗2(q

Lm
1 , b(qLm1 )) =

q∗2(q
Ln
1 , b(qLn1 )), the resolute Firm 1 can be indifferent only if qLm1 > qbr1 (q∗2(q

Lm
1 , b(qLm1 ))) >

qLn1 . Since the resolute leader cannot choose any leader quantity just below qLm1 with
positive probability, for any ε > 0 and suffi ciently small, we can find a deviant leader
quantity, qL1 = qLm1 − ε > qbr1 (q∗2(q

Lm
1 , b(qLm1 ))), such that qL1 is played with probability
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zero in the given mixed-strategy equilibrium. Since b(qLm1 ) ∈ (0, 1), we can also pick ε > 0

suffi ciently small so that q∗2(q
Lm
1 , b(qLm1 )) = q∗2(q

L
1 , b
′) for b′ ∈ (b(qLm1 ), 1). The flexible Firm

1 is then indifferent between its equilibrium payoffand a deviation to qL1 that is associated
with the belief b′. The equilibrium payoff for the resolute Firm 1, however, is lower than
that which it would receive from a deviation to qL1 that is associated with the belief b

′,
since the resolute Firm 1 enjoys the benefit of moving its final quantity closer to its best-
response value. For b > b′, both types of Firm 1 would gain from the deviation. Our
refinement thus requires that b(qL1 ) = 1, which induces the resolute Firm 1 to deviate.
Fourth, we claim that a refined mixed-strategy equilibrium does not exist in which the

flexible Firm 1 employs a pure strategy and earns a payoffgreater than its Nash payoff, πN1 .
To establish this claim, we assume to the contrary that a mixed-strategy equilibrium exists
in which the resolute Firm 1 randomizes over at least two leader quantities, the flexible
Firm 1 selects a single leader quantity qL1 (F ) with probability one, and the flexible Firm 1
earns a payoff that exceeds πN1 . This case is possible only if the resolute Firm 1 employs a
mixed strategy that selects qL1 (F ) with positive probability, so that b(qL1 (F )) ∈ (0, 1) where
qL1 (F ) > qN1 . The resolute Firm 1 then must also select at least one other leader quantity
with positive probability, where in this case any leader quantity qLm1 with qLm1 6= qL1 (F )

that the resolute Firm 1 selects with positive probability must satisfy qLm1 ≥ qN1 and
b(qLm1 ) = 1. The flexible Firm 1 would deviate and mimic any such qLm1 if qLm1 > qL1 (F ),
since it would thereby lower the period-2 equilibrium quantity of Firm 2. Hence, we also
require for this case that qL1 (F ) > qLm1 for any qLm1 that the resolute Firm 1 selects with
positive probability that differs from qL1 (F ). Given our assumption that the second-order
condition for the standard Stackelberg solution holds with strict inequality, and the fact
that the resolute Firm 1 must be indifferent with respect to all leader quantities qLm1
that induce the belief b(qLm1 ) = 1, we know that the mixed strategy of the resolute Firm
1 can put positive probability in this case on at most two leader quantities that differ
from qL1 (F ). For any mixed-strategy equilibrium of this kind, we can thus always find qL1
arbitrarily close to and below qL1 (F ) that is played with zero probability.
Let us thus suppose that there exists a mixed-strategy equilibrium in which the flexible

Firm 1 selects qL1 (F ) with probability one and the resolute Firm 1 selects qL1 (F ) with
positive probability while also selecting at least one but no more than two other leader
quantities with positive probability. Given our preceding discussion, let us suppose, too,
that b(qL1 (F )) ∈ (0, 1) and qL1 (F ) > qN1 . Using Lemma 1 and (9), we may further conclude
that qL1 (F ) > qbr1 (q∗2(q

L
1 (F ), b(qL1 (F )))) > qN1 . As noted above, we can now find a deviant

leader quantity, qL1 = qL1 (F ) − ε > qbr1 (q∗2(q
L
1 (F ), b(qL1 (F )))), such that qL1 is played with

probability zero in the given mixed-strategy equilibrium. Since b(qL1 (F )) ∈ (0, 1), we
can also pick ε > 0 suffi ciently small so that q∗2(q

L
1 (F ), b(qL1 (F ))) = q∗2(q

L
1 , b
′) for b′ ∈

(b(qL1 (F )), 1). As before, the flexible Firm 1 is then indifferent between its equilibrium
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payoff and a deviation to qL1 that is associated with the belief b
′; however, the equilibrium

payoff for the resolute Firm 1 is lower than that which it would receive from a deviation
to qL1 that is associated with the belief b

′, since the resolute Firm 1 enjoys the benefit of
moving its final quantity closer to its best-response value. For b > b′, both types of Firm
1 would gain from the deviation. Our refinement thus requires that b(qL1 ) = 1, which in
turn induces the resolute Firm 1 to deviate.
Fifth, regardless of its type, Firm 1 does not earn less than its Nash payoff, πN1 , in any

equilibrium. This follows since Firm 1 could always achieve its Nash payoff by setting its
leader quantity equal to its Nash output, qN1 . Combining this point with our third and
fourth observations, we conclude that any refined mixed-strategy equilibrium the flexible
Firm 1 earns a payoff equal to its Nash payoff, πN1 .
Sixth, we now claim that, in any refined mixed-strategy equilibrium, the resolute Firm

1 must play a pure strategy whereby it selects qN1 with probability one. To establish this
claim, we refer to our first observation to rule out leader quantities for the resolute Firm
1 that are below qN1 . Furthermore, if the resolute Firm 1 were to select a leader quantity
above qN1 with positive probability in a mixed-strategy equilibrium, then the flexible
Firm 1 could mimic this choice and earn a payoff that exceeds πN1 , which contradicts
the conclusion based on our third and fourth observations that the flexible Firm 1 earns
a payoff equal to its Nash payoff, πN1 , in any refined mixed-strategy equilibrium. This
means that the resolute Firm 1 also earns its Nash payoff, πN1 , in any refined mixed-
strategy equilibrium.
Last, we observe that Firm 2 earns its Nash payoff, πN2 , in any refined mixed-strategy

equilibrium. This follows since the resolute Firm 1 must select qN1 with probability one,
while the flexible Firm 1 either separates with probability one with randomly determined
leader quantities that differ from qN1 , or pools at q

N
1 with some positive probability and

separates with complementary probability with randomly determined leader quantities
that differ from qN1 . In any case, and whether Firm 1 is resolute or flexible, Firm 2
expects that the final output of Firm 1 is qN1 and thus best responds with a final output
of qN2 , ensuring that both types of Firm 1 earn πN1 while Firm 2 earns πN2 .

Omitted proofs for the Stackelberg-down case

Proposition 13: For the general-payoff setting in the Stackelberg-down case and under
the baseline and additional assumptions, Propositions 4 and 5 both hold. Proposition 6
now holds with a reversed inequality: in any equilibrium, qL1 (R) ≤ qN1 .

Proof. The proof is analogous to the proof of Proposition 12 and is provided here for
completeness.
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To confirm Proposition 4, we specify a pooling equilibrium in which qL1 (R) = qL1 (F ) =

qgs1 (r), b(qgs1 (r)) = r and b(qL1 ) = 0 for all qL1 6= qgs1 (r). From part 3 of the additional
assumptions, we know that qgs1 (r) < qN1 . Consider the resolute Firm 1. A deviation
to any qL1 ≥ qN1 induces the belief b(qL1 ) = 0. By part 1 of the baseline assumptions,
the best such deviation for the resolute Firm 1 is qL1 = qN1 , which delivers the payoff
πR(qN1 , 0) = πN1 . But using part 3 of the additional assumptions and part 2 of the baseline
assumptions, we know πR(qgs1 (r), r) > πR(qN1 , r) = πN1 . Next, a deviation to any q

L
1 < qN1

with qL1 6= qgs1 (r) likewise induces the belief b(qL1 ) = 0. We then have that πR(qgs1 (r), r) >

πR(qL1 , r) > πR(qL1 , 0), where the first (second) inequality follows from part 3 (part 2) of the
additional assumptions. Thus, the resolute Firm 1 loses from any deviation. Consider the
flexible Firm 1. Using qgs1 (r) < qN1 and part 3 of the baseline assumptions, we know that
πF (qgs1 (r), r) > πR(qgs1 (r), r). As just shown, πR(qgs1 (r), r) > πR(qN1 , r) = πN1 . Thus, using
part 4 of the baseline assumptions, πF (qgs1 (r), r) > πN1 = πF (qL1 , 0) for any qL1 6= qgs1 (r).
Hence, the flexible Firm 1 loses from any deviation.
We consider next Proposition 5. Fix a separating equilibrium. We thus have qL1 (R) 6=

qL1 (F ) and b(qL1 (R)) = 1 > 0 = b(qL1 (F )). It follows from part 4 of the baseline assumptions
that Π1(F ) = πF (qL1 (F ), 0) = πN1 . A separating equilibrium can exist only if the flexible
Firm 1 does not gain from deviating to qL1 (R); thus, it must be that πN1 = πF (qL1 (F ), 0) ≥
πF (qL1 (R), 1). We next observe that πF (qL1 (F ), 0) = πF (qN1 , 0) = πF (qN1 , 1), where the first
(second) equality follows from part 4 (part 2) of our baseline assumptions. It now follows
that a separating equilibrium exists only if πF (qN1 , 1) ≥ πF (qL1 (R), 1). Using part 1 of the
additional assumptions with b = 1, we thus have that qN1 ≤ qL1 (R). Suppose qN1 < qL1 (R).
Then Π1(R) = πR(qL1 (R), 1) < πR(qN1 , 1) = πR(qN1 , b(q

N
1 )) = πN1 , where the inequality

follows given qL1 (R) > qN1 from part 3 of the additional assumptions with b = 1 and
where the second and third equalities follow from part 2 of the baseline assumptions. It
follows that the resolute Firm 1 would deviate to qL1 = qN1 . Thus, a separating equilibrium
can exist only if qL1 (R) = qN1 . It follows from part 2 of the baseline assumptions that
Π1(R) = πR(qL1 (R), 1) = πN1 .

We now show that Proposition 6 holds with a reversed inequality: in any equilibrium,
qL1 (R) ≤ qN1 . Assume to the contrary that an equilibrium exists in which q

L
1 (R) > qN1 . By

Proposition 5, the equilibrium must be a pooling equilibrium. By part 3 of the baseline
assumptions, we know πF (qL1 (R), r) > πR(qL1 (R), r) = Π1(R). We also know from part
1 of the additional assumptions that πF (qL1 (R), r) < πF (qN1 , r) = πN1 , where the equality
uses part 2 of the baseline assumptions. We thus have that Π1(R) < πN1 , which contradicts
Corollary 1.

Proposition 14: For the general-payoff setting in the Stackelberg-up and Stackelberg-
down cases and under the baseline and corresponding additional and single-crossing-
property assumptions, Proposition 8 holds.
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Proof. The Stackelberg-up case is proved in the paper. The proof for the Stackelberg-
down case is analogous and is included here for completeness.
For the Stackelberg-down case, we know that Proposition 6 holds with reverse inequal-

ity: in any equilibrium, qL1 (R) ≤ qN1 . Thus, let us consider any pooling equilibrium such
that qL1 (R) = qL1 (F ) and qL1 (F ) < qN1 . The equilibrium payoff to Firm 1 of type t ∈ {F,R}
is then Π1(t) = πt(qL1 (F ), r). Pick qL1 = qL1 (R) + ε with ε > 0 and qL1 = qL1 (R) + ε < qN1 .
Define b′ by πF (qL1 , b

′) = πF (qL1 (F ), r). For ε small and using parts 1 and 2 of the addi-
tional assumptions, we have that b′ ∈ (r, 1). Clearly, b′ ∈ DF

0 (qL1 ). From the single-crossing
property, we now have that πR(qL1 , b

′) > πR(qL1 (F ), r). Thus, b′ ∈ DR(qL1 ).

Using part 2 of the additional assumptions, we see that ∆F (qL1 , b) ≡ πF (qL1 , b)−Π1(F )

is increasing in b. Thus, DF (qL1 ) ∪ DF
0 (qL1 ) = {b|b ≥ b′}. Likewise, using part 2 of the

additional assumptions, we see that ∆R(qL1 , b) ≡ πR(qL1 , b)−Π1(R) is increasing in b. Since
∆R(qL1 , b

′) > 0, it follows that DR(qL1 ) includes {b|b ≥ b′}. We conclude that DF (qL1 ) ∪
DF
0 (qL1 ) v DR(qL1 ) and DR(qL1 ) /∈ ∅, and so the refinement requires that b(qL1 ) = 1. This

belief in turn induces the resolute Firm 1 to deviate, since b = 1 ∈ DR(qL1 ).

Stackelberg-down: A simple quantity-game setting with
a positive aggregate-quantity externality

Consider the quantity-game setting with quadratic payoffs but suppose that each firm
enjoys an additional and separable gain when the industry output increases. To simplify
the discussion, suppose also that the unit costs are symmetric across the two firms: c1 =

c2 ≡ c. The profit functions thus now take the following form:

π1(q1, q2) = [α− β(q1 + q2)− c]q1 + λ(q1 + q2)

π2(q1, q2) = [α− β(q1 + q2)− c]q2 + λ(q1 + q2),

We can imagine that higher industry output has beneficial effects on future demand or
costs or the regulatory environment, which we capture here in a simplistic way with the
parameter λ > 0. For i, j = 1, 2 with i 6= j, we assume that α > 0, β > 0 and c ≥ 0

where α/β > c, α > c and λ > α − c. The quantity space for Firm i is Qi = [0, q) where
q = (α + λ− c)/β.
The corresponding Nash output levels and Nash profit levels are now

qNi =
α + λ− c

3β

πNi = (
α + λ− c

3
)2

1

β
+ λqNj ,
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where qNi ∈ (0, q) and i, j = 1, 2 with i 6= j.

For a given leader quantity qL1 ∈ (0, q) and belief b ∈ [0, 1], the period-2 equilibrium
quantities are denoted as q∗1(q

L
1 , b) and q

∗
2(q

L
1 , b), where q

∗
1(q

L
1 , b)maximizes π1(q1, q

∗
2(q

L
1 , b))

and where q∗2(q
L
1 , b) maximizes b · π2(qL1 , q2) + (1− b) · π2(q∗1(qL1 , b), q2). The solutions are

unique and take the following form:

q∗1(q
L
1 , b) =

α + λ− c+ bβqL1
β(3 + b)

q∗2(q
L
1 , b) =

(α + λ− c)(1 + b)− 2βbqL1
β(3 + b)

,

where q∗i (q
L
1 , b) ∈ (0, q). The flexible Firm 1’s payoffis thus πF (qL1 , b) = π1(q

∗
1(q

L
1 , b), q

∗
2(q

L
1 , b)),

while the resolute Firm 1’s payoff is πR(qL1 , b) = π1(q
L
1 , q

∗
2(q

L
1 , b)). For the simple linear

model considered here, these payoff values take the following form:

πF (qL1 , b) = (
α + λ− c+ bβqL1

3 + b
)2

1

β
+ λ(

(α + λ− c)(1 + b)− 2bβqL1
β(3 + b)

)

πR(qL1 , b) = (
2(α + λ− c)− β(3− b)qL1

3 + b
)qL1 + λ(

(α + λ− c)(1 + b)− 2bβqL1
β(3 + b)

).

With the payoffs now defined, we can easily check whether the baseline, additional and
single-crossing-property assumptions hold.
Straightforward calculations confirm that the baseline assumptions hold. We also find

that the generalized Stackelberg solution takes the form

qgs1 (b) =
α + λ(1− b)− c

β(3− b) ∈ (0, qN1 ),

where qgs1 (b) > 0 follows from α > c and where qgs1 (b) < qN1 for b > 0 follows since
λ > (α − c)/2 is implied by our parameter restrictions. Thus, the model belongs to
the Stackelberg-down case. It is direct to verify that the model satisfies the additional
assumptions for the Stackelberg-down case. We note that the first additional assumption
uses λ > α − c in order to establish monotonicity for the case where b = 1 with qL1 near
q1, whereas λ > (α − c)/2 suffi ces for the second additional assumption and, as noted,
the third additional assumption utilizes α > c and λ > (α− c)/2.
To confirm the single-crossing property for the Stackelberg-down case, we note that

the indifference equation πF (qL1 , b) = πF (qL1 (F ), r) defines a function b = b(qL1 ) such that

db

dqL1
|πF =

b(3 + b)

3(qN1 − qL1 )
> 0
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for b > 0 and qN1 > qL1 . As expected, the flexible Firm 1’s payoff is held constant exactly
when q∗2(q

L
1 , b) is held constant. We may now compute that

dπR(qL1 , b(q
L
1 ))

dqL1
=

6β(qN1 − qL1 )

3 + b
> 0

for qN1 > qL1 . Hence, if we start at (qL1 (F ), r) with qL1 (F ) ∈ [0, qN1 ) and b(qL1 (F )) = r

and then consider (qL1 , b) with q
L
1 = qL1 (F ) + ε < qN1 and b(qL1 ) = b′ ∈ (r′, 1) for ε > 0

suffi ciently small, then

dπR(qL1 , b(q
L
1 )) =

6β(qN1 − qL1 )

3 + b
· ε > 0,

and so the single-crossing-property assumption holds for the Stackelberg-down case.
Referring to Corollary 3, we conclude that, when this standard linear model of duopolis-

tic quantity competition is augmented to include a positive aggregate-quantity exter-
nality, refined equilibria exist, and in any refined equilibrium qL1 (R) = qN1 and thus
Π1(R) = Π1(F ) = πN1 .

More generally, the Stackelberg-down case can be associated with strategic settings
in which best-response functions are decreasing and a higher action generates a positive
cross-firm externality, as in the setting just analyzed, and also in which best-response
functions are increasing and a higher action generates a negative cross-firm externality.
For an appropriately specified model, we could illustrate the application of our results to
Stackelberg-down settings of the latter kind as well.
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