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Abstract

This paper considers a model with a leader and follower in which the leader
is privately informed about its resolve to follow through on a proposed course of
action. The leader’s initial or promised action, referred to as the “leader action,”
may then play both commitment and signaling roles. After putting the game in a
reduced form where the leader’s payoffs are expressed as a function of the leader
action and the follower’s belief, we show that a Nash pooling equilibrium exists in
which, whether the leader is resolute or flexible, the leader action is set equal to
the Nash action that the leader would choose in a pure-strategy equilibrium of the
associated simultaneous-move game. Motivated by the D1 refinement for signaling
games, we define a refinement for the reduced-form game and show that the Nash
pooling equilibrium outcome is the unique refined pooling equilibrium outcome. We
show further that in any refined equilibrium the final actions are the Nash actions
of the simultaneous-move game, with each player thus earning Nash payoffs. These
findings hold even when the leader is almost certain to have resolve. The arguments
are first developed in a strategic setting motivated by the Cournot quantity game.
We then identify suffi cient conditions on general reduced-form payoff functions and
provide applications.
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1 Introduction

The strategic value of commitment is a fundamental and celebrated insight from game
theory that has been widely used in economics and other disciplines. The idea is subtle
but powerful: by moving first with an unalterable and observable action, a player may be
able to change the behavior of the second mover in a way that is advantageous to the first
mover. In the classic quantity-game setting, the simultaneous-move game admits a unique
pure-strategy (Cournot) equilibrium, and the first mover in the associated sequential-move
game gains precisely because of its ability to commit itself to an action that is not a best-
response to the induced follower action. Stackelberg (1934) offers a formalization of this
idea, and Schelling’s (1960) classic work explores many interesting implications.
A direct interpretation of the standard sequential-move game is that the leader takes an

unalterable action that is observed by the follower, but this game can also be interpreted
as capturing situations in which the leader makes a credible and observed promise about a
future action. Under either interpretation, the follower observes the action or promise and
then selects a best response. For many applications, however, the standard representation
of the first-mover advantage may be questioned in two important respects. First, it may be
more realistic to allow that the leader’s initial action or promise is of uncertain significance
for the follower. The follower may reasonably wonder if the leader’s initial action might
be later modified; likewise, the follower may reasonably wonder if the leader will follow
through on a promise about a future action. In short, the follower may be uncertain of
the leader’s resolve to follow through on a proposed course of action. Second, the leader
may have private information about its resolve when taking an initial action or issuing a
promise. The level of the initial or promised action may then also play a signaling role as
the follower attempts to gauge the relevance of the leader’s initial move.
With these considerations in mind, we consider here a game with private resolve. The

incomplete-information game works as follows. Nature determines whether the leader has
resolve or is flexible, where Nature picks each type with positive probability. The leader
is privately informed of Nature’s choice and then selects a “leader action”corresponding
to an initial action or promise. The follower observes the leader action, forms a belief
about the leader’s type, and then takes its own action. If the leader has resolve, then the
leader is committed to the leader action. The payoffs to the leader and follower are then
determined based on the leader action and the follower’s action. If instead the leader
is flexible, then the leader is unconstrained by the leader action and optimally selects
its final action as a best response to the follower’s anticipated and simultaneous action.
Given its beliefs, the follower thus optimally selects its action as a best response against
the leader’s uncertain behavior, knowing that a resolute leader will stick with the leader
action while a flexible leader will simultaneously select its best response.
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A key feature of the game with private resolve is that the leader action may affect the
follower’s behavior through two channels. First, as in the standard sequential-move game,
the follower’s behavior is directly influenced by the leader action if the leader has resolve.
Second, as in a signaling game, the leader action may signal the leader’s type and thus
affect the probability with which the follower believes the leader to have resolve.1 Given
the central role of beliefs, it is perhaps not surprising that multiple equilibria exist in the
game. Following the literature on signaling games, we thus use a refinement motivated by
the D1 refinement to select among equilibria, and we refer to any equilibrium (outcome)
that satisfies this refinement as a refined equilibrium (outcome).2

The game can be interpreted in several ways. For example, in the classical quantity-
game setting, the Cournot and Stackelberg outcomes correspond to limiting cases where
Nature is known to give the leader resolve with probability zero and one, respectively.
In the game with private resolve, we add private information and focus on the middle
ground, where this probability resides between zero and one. One interpretation is that
the leader chooses an initial quantity that is observed by the follower, as in the standard
Stackelberg game, but with the added wrinkle that the leader is privately informed about
whether the quantity intended for the relevant market can be costlessly re-set at the
time that the follower makes its quantity choice. An alternative interpretation is that
the “leader quantity”represents instead a promise or pre-announcement as to a planned
output. The leader may have superior information in this case as to whether it is bound
by its promise, whether for financial, legal or moral reasons. A large theoretical and
empirical literature addresses the potential strategic aspects of firms’preannouncements
about future production or capacity expansion plans.3

Another interpretation is that the leader is a government offi cial who seeks to shape
market expectations with a leader action that corresponds to a promise. An example arises
in the literature following Barro and Gordon (1983) and Backus and Driffi ll (1985) that
addresses a monetary-policy commitment issue. In this model, the central bank would
like to commit to zero inflation but has an incentive to surprise the public with positive
inflation in order to expand aggregate output. Since the public has rational expectations,
the no-commitment solution entails inflation that is fully anticipated, resulting in a Pareto-
inferior outcome in comparison to the commitment solution of zero inflation. The analysis

1Another way of describing the game is that the leader is privately informed when taking its leader
action as to whether this action is an irrevocable commitment or simply “cheap talk.”See Crawford and
Sobel (1982) for the pioneering analysis of cheap-talk games.

2As explained below, we apply the refinement to a reduced-form game. We show in Section 5.3 that
the refinement’s restrictions are much stronger than needed for our findings. See Cho and Kreps (1987)
and Fudenberg and Tirole (1991) for further discussion of the D1 refinement in signaling games.

3See Bayus, et al (2001), Christensen and Caves (1997), Corona and Nan (2013), Doyle and Snyder
(1999) and Gilbert and Lieberman (1987). For discussions of the relationships between quantity and
capacity choices, see Kreps and Scheinkman (1983), Maggi (1996) and Poddar and Sasaki (2002).
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developed here offers a framework within which to explore commitment games where the
leader has private information about its capacity to keep its promise.4

Motivated by these and other applications, we analyze equilibrium and refined equi-
librium behavior in a game with private resolve. To fix ideas, we begin with a strategic
setting motivated by the classic quantity-game setting, wherein Firm 1, the leader, is ei-
ther resolute or flexible and selects a leader quantity. The follower in this setting is Firm
2, which forms a belief about Firm 1’s type and selects its best-response quantity under
uncertainty. In line with the main features of standard treatments of quantity games,
we assume that the best-response functions are decreasing and that a higher quantity by
one firm lowers the profit of the other. We also fully model the “period-2 equilibrium
quantity” choices that arise after the leader quantity is selected. The period-2 equilib-
rium quantity choices are the best-response choices for the flexible Firm 1 and Firm 2,
when the resolute Firm 1 is constrained to maintain its leader quantity and Firm 2 best
responds against an uncertain output from Firm 1. The period-2 equilibrium quantities
are functions of the leader quantity and Firm 2’s belief after observing the leader quantity.
They are the final quantities that would be chosen by the flexible Firm 1 and Firm 2 in
the continuation of any sequential equilibrium (Kreps and Wilson, 1982a) of the game.
To characterize equilibrium behavior, we embed the period-2 equilibrium quantities

into Firm 1’s payoff function and put the game in “reduced form.”In the reduced-form
game, payoffs are expressed directly as a function of the leader quantity and the follower’s
belief. A pure-strategy equilibrium for the reduced-form game is then comprised of an
optimal leader-quantity choice for each type of Firm 1 along with a belief function for
Firm 2, where beliefs are consistent with Bayes’ rule along the equilibrium path. We
show that a “Nash pooling equilibrium”exists in which, whether Firm 1 is resolute or
flexible, it sets its leader quantity equal to the (Cournot-) Nash quantity that it would
choose in a pure-strategy equilibrium of the associated simultaneous-move game.5 We
also characterize the set of separating equilibria and a class of “generalized-Stackelberg
pooling equilibria.” The separating equilibria are only superficially distinct from Nash
pooling equilibria and lead to the same final Nash outputs and payoffs. The Nash pooling
equilibrium outcome is also the only pooling equilibrium outcome that exists robustly.

4In a “zero lower bound”world, the central bank may instead wish to use “forward guidance”over
the path of future interest rates to raise the expected level of future inflation. As Rogoff (2017, pp. 53-4)
notes, however, a credible promise associated with forward guidance may be diffi cult to achieve, “given
1) the turnover in central bank governing boards, and 2) the central bank has an incentive not to keep
its promise if the economy does indeed recover.”Such considerations may limit a central bank’s ability
to make credible promises, whether the promise concerns lowering or raising the future rate of inflation.

5In the sequel, when we refer to “Nash quantities” and the “Nash equilibrium,” it is understood
that we are referring to the actions that would be chosen in the pure-strategy Nash equilibrium of the
associated simultaneous-move game. In terms of the quantity-game setting, therefore, Nash quantities
are the standard Cournot-Nash quantities.
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Motivated by the D1 refinement for signaling games, we define a refinement for the
reduced-form game and show that the Nash pooling equilibrium outcome is the unique
refined pooling equilibrium outcome. We conclude that refined equilibria exist and that
in any refined equilibrium the final outputs are the Nash outputs, with each firm thus
earning its Nash profits. In other words, under the refinement for the reduced-form game,
the final actions and payoffs are the same as would have occurred had the interaction
been modeled as a simultaneous-move game.6 From this perspective, our results indicate
a sense in which the strategic advantage of commitment may be lost when the leader has
private information about its resolve. We note that the value of commitment may be lost
in this regard even when the leader is almost certain to have resolve.
The power of the refinement builds from a simple intuition. Consider first the reason

that the Nash pooling equilibrium is refined. If Firm 1 were to deviate to a leader
quantity different from the Nash quantity, then Firm 2 might plausibly evaluate which
type of Firm 1 would be most likely to gain from the deviation. An important feature of
the Nash pooling equilibrium is that both types of Firm 1 make the same Nash payoff in
equilibrium; however, if Firm 2 were to form a belief after observing a deviation under
which the resolute Firm 1 gains, then the flexible Firm 1 would be sure to gain as well.
The reason is that the flexible Firm 1 has an added benefit from deviation: it can adjust
its final quantity to be a best response to Firm 2’s quantity. In terms of the refinement,
we are thus on solid ground if we associate any deviation with a flexible Firm 1. This is
enough to ensure that the Nash pooling equilibrium exists as a refined equilibrium. We
note that this argument is quite general and, in particular, makes no reference to the
relative magnitudes of the Stackelberg and Nash quantities for Firm 1.
Consider second the reason that no other pooling equilibrium is refined. For this

strategic setting, we show that any other pooling equilibrium must be at a leader quantity
that exceeds the Nash quantity (i.e., that is in the direction of Firm 1’s Stackelberg
quantity). At such an equilibrium, the flexible Firm 1 earns a greater equilibrium payoff
than does the resolute Firm 1, whose quantity is not a best response. If Firm 1 were to
deviate to a slightly lower leader quantity, then the period-2 equilibrium quantity of Firm
2 would remain unchanged if Firm 2’s belief were to adjust to place just the right amount
of additional weight on a resolute Firm 1. At this belief, the flexible Firm 1 does not gain
from the deviation, since it continues to best respond against an unaltered output by Firm
2. The resolute Firm 1, however, does gain from the deviation under this belief, since the
deviation enables it to place its quantity closer to its best-response level without altering
Firm 2’s behavior. Building from this insight, we show that under the refinement the
deviation should be believed to have come from a resolute Firm 1. With this belief, the
deviation would lead to a beneficial quantity reduction from Firm 2, and so the resolute

6As confirmed in Section 5.5, this result also holds when refined mixed-strategy equilibria are included.
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Firm 1 would indeed deviate, ensuring that alternative pooling equilibria are not refined.
We note that this argument makes reference to the relative magnitudes of the Stackelberg
and Nash quantities and so requires modification in other strategic settings.
We develop our arguments in a strategic setting motivated by a standard quantity

game. The quantity-game application is of direct interest, and to fix ideas we utilize the
language of quantity competition when presenting our initial model. It is important to
emphasize, though, that our description of this strategic setting draws only on two main
features: decreasing best-response functions and a negative externality to one player
when the other player selects a higher action. These strategic features arise as well in a
range of other applications. For example, as is well known (Cournot, 1963, chapter ix;
Sonnenschein, 1968), when marginal costs are zero, this strategic setting also arises in a
price-setting game if firms sell complementary products that are of no use unless combined
on a 1-to-1 basis to form a composite product. As another example, the strategic choices
of the two firms could be investments in cost reduction, where some oligopoly game
generates payoffs once the final investments and thus production costs are determined.
For many post-investment oligopoly environments, investment best-response functions are
negatively sloped and a higher investment by one firm lowers the profit of the other.7

At the same time, other important applications arise in different strategic settings. For
example, when firms sell differentiated products and set prices, the price best-response
functions may be increasing and a higher price by one firm may convey a positive external-
ity to the other firm. While the price- and quantity-game settings differ in those respects,
they share the property that the Stackelberg action of the leader exceeds the Nash action
that it would take in a simultaneous-move game. By contrast, in the monetary-policy
game, for example, the Stackelberg solution lies below the Nash action. From such ex-
amples, we are led to ask two questions. First, do related results hold for other strategic
settings? Second, if so, what are the unifying features of strategic settings that underlie
the characterizations of (refined) equilibrium behavior?
To address these questions, we approach the problem in a more abstract way and

simply begin with a reduced-form payoff for Firm 1. The reduced-form payoff could
reflect any of a variety of channels through which the leader action and associated belief
affect the subsequent interaction between the leader and follower. Starting directly with
a reduced-form payoff function for Firm 1, our approach is to look for general suffi cient
conditions on the reduced-form payoff functions that deliver our results. This approach

7For a standard Cournot setting, a firm is hurt when its rival invests more in cost reduction; further-
more, investment best-response functions are decreasing if the post-investment oligopoly game entails
Cournot competition with linear demand and costs. Besley and Suzurmura (1992) and Reinganum
(1983) show further that investment best-response functions are decreasing under subsequent Cournot
competition for some popular non-linear demand structures. Bagwell and Staiger (1994) show that the
described strategic features for the investment game are also satisfied when the investments are followed
by price competition among firms selling differentiated products when demand and costs are linear.
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clarifies the driving forces behind the analysis and facilitates future applications. To
implement this approach, we find it useful to organize the discussion around two strategic
settings, those for which the Stackelberg solution exceeds the Nash action and those for
which the Stackelberg solution lies below the Nash action. We refer to the respective
settings as the “Stackelberg-up”and “Stackelberg-down”cases, respectively.
We begin by identifying a general set of baseline assumptions under which the Nash

pooling equilibrium is refined. As anticipated, the baseline assumptions do not rely on
the distinction between the Stackelberg-up and -down cases. We then identify addi-
tional assumptions and a single-crossing-property assumption, which each take different
forms for the Stackelberg-up and -down cases and which together ensure that any refined
equilibrium in the reduced-form game with private resolve generates Nash payoffs. The
suffi cient conditions are easy to use for applications, once Firm 1’s payoff is captured in
reduced form. To illustrate the value of these results, we consider two applications, each of
which is explored for simplicity in a quadratic-payoff formulation. The applications are a
quantity-game setting with linear demand and costs, and the monetary-policy game. The
first application fits in the Stackelberg-up category, whereas the monetary-policy game
belongs to the Stackelberg-down category. For each application, we use our general suffi -
cient conditions to show that refined equilibria exist and that in any refined equilibrium
Firm 1 earns Nash payoffs, regardless of its type. We also discuss how are results could
be used for other applications, including price-game settings.
The paper is organized as follows. Section 2 offers a review of the related literature. In

Section 3, we set up the general game that is motivated by the strategic setting associated
with quantity competition. We put the game into reduced form and characterize equilib-
rium behavior in Section 4. The analysis of refined equilibria is developed in Section 5.
In Section 6, we start with general reduced-form payoff functions and develop suffi cient
conditions for our findings in both Stackelberg-up and -down settings. We also show that
our results can be easily used in applications. Section 7 discusses an extension in which
the leader is privately informed about the probability that it will be able to carry though
on its commitment. Section 8 concludes. Remaining proofs are collected in the Appendix.

2 Related Literature

The paper contributes to several literatures. The main finding - that all refined equi-
libria in the reduced-form game with private resolve generate Nash payoffs - is broadly
reminiscent of research on the value of commitment when the standard sequential-move
game is perturbed to allow for imperfect observability. Bagwell (1995) considers a gen-
eral “noisy-leader game” with a non-moving support assumption. Assuming that the
follower’s best-response correspondence is single-valued, he shows that the set of pure-
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strategy Nash equilibrium outcomes of the noisy-leader game coincides exactly with the
set of pure-strategy Nash equilibrium outcomes in the associated simultaneous-move game,
even when the noise in the signal is arbitrarily small.8

In comparison to this literature, the model considered here maintains the standard
assumption of perfect observability and instead introduces private information regarding
the significance of the initial action or the credibility of the promise. Despite this differ-
ence, the current paper shares with Bagwell (1995) a common perspective: the defining
feature of the Stackelberg solution, namely, that the leader commits to an action that is
not a best response, may generate deviation opportunities for the leader and thus raise
potential robustness concerns for this solution when the game is appropriately perturbed.
The paper is also related at a broad level to the literature on reputation formation in

finitely-repeated games. The pioneering papers in this literature are Kreps and Wilson
(1982b) andMilgrom and Roberts (1982). A key message is that the introduction of a little
incomplete information can generate rich behavior as compared to that which emerges
in the complete-information benchmark. With regard to payoffs, Fudenberg and Levine
(1989) show that a suffi ciently patient “normal” long-lived player facing a sequence of
short-lived players can effectively achieve the discounted expected payoff associated with
the Stackelberg action, provided that there is at least a small probability of a type that
is committed to the Stackelberg action. By contrast, we focus here on the addition of a
possibly small amount of incomplete information to a sequential-move game so that the
follower is uncertain about the significance of the leader’s commitment. In this context,
any refined equilibrium of the reduced-form game generates Nash payoffs, provided that
there is at least a small probability of a non-Stackelberg (i.e., flexible) type.
In the literature on reputational bargaining, Abreu and Gul (2000) examine an infinite-

horizon model with two-sided offers in which players may develop reputations as behav-
ioral types that insistently demand fixed surplus shares, where each player has many
potential behavioral types with each such type exogenously committed to a different
share.9 Our model is broadly related in that the leader may be resolute or flexible, where
a resolute (flexible) leader is similar to a behavioral (normal) type. Kim’s (2009) analysis
of bargaining with one-sided offers in the context of the durable-goods monopoly problem
is more closely related. In one version of his model, the seller is either a normal type or a

8For a 2×2 example, Bagwell also shows that mixed-strategy equilibria exist for the noisy-leader game,
where one such equilibrium converges to the Stackelberg outcome as the noise in the signal goes to zero.
van Damme and Hurkens (1997) show for general noisy-leader games that a mixed-strategy equilibrium
exists that is close to the Stackelberg equilibrium when the noise is small. They also construct a refinement
that selects this equilibrium. Oechssler and Schlag (2000) examine the noisy-leader game with a wide
range of evolutionary and learning dynamics. They find that the pure-strategy Nash equilibrium is rarely
eliminated and often uniquely selected. For other contributions, see Bhaskar (2009), Guth, et al (1998),
Maggi (1999), Morgan and Vardy (2007, 2013) and Vardy (2004).

9See also Chatterjee and Samuelson (1987, 1988), Compte and Jehiel (2002) and Myerson (1991).
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“rational commitment”type, where the seller’s type is privately observed before any price
offers are made and a rational commitment seller chooses the price to which a commitment
is made.10 Like Kim’s rational commitment seller type, the resolute leader in our model
privately observes its type before selecting the leader action to which it is committed. Our
finding that the Nash pooling equilibrium exists robustly has an interesting counterpart
in Kim’s model. In his continuous-time, gap-case model, the no-commitment solution is
given by the Coase conjecture, and the corresponding Coasian equilibrium exists robustly.
Our analysis differs from Kim’s (2009) in three main ways. First, the aim and scope is

different. We do not consider the durable-goods monopoly problem but instead examine
a family of two-period games. This approach explicitly links our analysis to standard
Stackelberg settings and facilitates applications to oligopoly theory and monetary policy.
Second, the formal models have different features. For example, the flexible leader is
never committed to its leader action in our model whereas the initial price offer of the
normal seller in Kim’s model may be accepted and thus may have direct payoffrelevance.11

Third, the refinement and resulting selected outcomes differ. The D1-based refinement
used here achieves its power through a single-crossing property that builds directly from
the defining feature of the Stackelberg solution and ensures that any refined equilibrium
delivers Nash payoffs. Kim is able to refine the equilibrium set for his game by selecting
those equilibria that remain when the game is perturbed to allow for a small probability
of behavioral types and the probability of those types is then taken to zero. He shows
that this refinement is always satisfied by the no-commitment (Coasian) equilibrium but
is also satisfied by a pooling equilibrium with a higher initial price when the probability
of a rational commitment type exceeds a cutoff value.
The paper is also related to recent work by Sanktjohanser (2017) and Dai (2017).12

Sanktjohanser extends the Abreu-Gul model to allow that players make simultaneous
offers after observing whether they are rational or “stubborn,”where a stubborn type
chooses the offer to which a commitment is made.13 As in the discussion in the previous
paragaph, the current paper has a different aim and scope and also differs formally, since
here the flexible leader is never committed to its leader action. As well, the simultaneous-
offer structure considered by Sanktjohanser introduces payoff discontinuities for the stub-

10See also Inderst (1995) for a related model with one-sided offers and an exogenous commitment price.
11The equilibrium set characterizations also differ. Kim establishes that the no-commitment (Coasian)

equilibrium is the unique equilibrium when the prior probability of the rational-commitment type is
below a cutoff value. By contrast, in our model, for any fixed prior probability of the resolute type, the
counterpart Nash pooling equilibrium outcome is never unique without refinement. See Proposition 4.
12I thank V. Bhaskar for bringing Kim’s (2009) and Sanktjohanser’s (2017) papers to my attention,

and I thank Kyungmin Kim for bringing Dai’s (2017) work to my attention.
13See also Kambe (1995). He analyzes a bargaining model with two-sided offers in which players make

offers to which they may become committed, where in one version of his model players privately observe
their types before making offers.
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born type that are not present in the model considered here. One point of contact is that
Sanktjohanser refines equilibria using the D1 refinement (applied to a reduced-form game)
and finds that every symmetric one offer equilibrium survives D1. The argument is based
on the additional flexibility that the rational type enjoys and is similar to the argument
presented here under which the Nash pooling equilibrium is refined for the reduced-form,
leader-follower game.
Dai (2017) considers a model of pricing and search in which the seller is privately

informed as to whether it is a commitment or non-commitment type, where the final
price of the former (latter) type must equal (is unconstrained by) its advertised price.
Consumers observe the seller’s advertised price but are uncertain of the final price when
deciding whether to incur a search cost and visit the seller. For this application, Dai fully
characterizes the sets of pure-strategy separating and pooling equilibria. The current
paper independently offers some related equilibrium characterizations and has two key
distinguishing features. First, we analyze a strategic setting motivated by the standard
quantity game and then proceed to consider a general-payoff setting that includes a range
of applications. Second, for these settings, we identify a single-crossing property and
thereby establish our main finding that all refined equilibria in the reduced-form game
with private resolve generate Nash payoffs.14

The paper is also related to signaling models of electoral competition. Banks (1990)
considers a model where the ideal policies of candidates are private information, winning
candidates implement their ideal policies, and voters use each candidate’s announced
policy position as a signal of that candidate’s ideal policy. Each candidate prefers to be
believed to have the ideal policy of the median voter, but the winning candidate faces a
lying or announcement cost when a discrepancy arises between the candidate’s announced
and ideal (implemented) policies.15 Callander and Wilkie (2005) extend Banks’model
to allow that the candidates also have private information about their costs of lying,
where the announced position for a candidate with no such cost amounts to cheap talk.
Kartik and McAfee (2007) explore related themes in a model in which a fraction of
(non-strategic) candidates are exogenously committed to a campaign platform and are
preferred by voters. In Callander’s (2008) model, a candidate’s campaign policy position
is endogenously selected and commits the candidate to a post-election policy; in addition,
the winning candidate chooses an effort level in the post-election phase, where the level
of effort is related to the candidate’s motivation type.
The model developed here differs in basic ways from those in the signaling literature

14Dai focuses on characterizing the full set of pure-strategy equilibria for her application, but she does
argue that the Cho-Kreps (1987) intuitive criterion eliminates a subset of pooling equilibria (those located
along one boundary of the equilibrium set) in an extended model with ex ante heterogeneous consumers.
15When lying costs are suffi ciently great, the refined equilibria are such that moderate (extreme) types

pool (separate). Bernheim (1994) develops a related characterization for a model of social conformity.
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on electoral competition and features an outcome, the Nash pooling equilibrium outcome,
which does not have a clear analog in the findings of that literature.16 Even so, the model
can be interpreted as also examining the relationship between promises and final actions,
where under this interpretation the resolute leader is a promise-keeper, the flexible leader
is unconstrained by past promises, and the leader is privately informed as to whether it
is resolute or flexible. From this perspective, the model is broadly similar to those in
Callander and Wilkie (2005) and Kartik and McAfee (2007) in that the flexible leader
engages in cheap talk and is free to select a distinct final action; however, the preferred
final action for the flexible leader here is endogenously determined in equilibrium as a best
response to the behavior of the follower rather than being given exogenously (Banks, 2000;
Callander and Wilkie, 2005; and Kartik and McAfee, 2007) or determined from a single-
agent optimization problem given characteristics (Callander, 2008). As a consequence,
the reduced-form payoffs in our model exhibit important, distinct properties.17

The paper is also broadly related to an oligopoly literature that endogenously deter-
mines the order of moves among firms. Hamilton and Slutsky (1990) provide an early
contribution of this kind. Using the D1 refinement, Mailath (1993) explores the endoge-
nous order of moves in a quantity-game setting with linear demand and costs when one
firm is privately informed about market demand. The informed player chooses whether
to move first or simultaneously, and this choice is an additional signal about the informed
player’s information. A distinguishing feature of the model considered here is that the
follower does not directly observe whether the leader’s “real”move is before or simulta-
neous with that of the follower. The order of moves in this sense is itself the source of
private information, and the value of commitment is examined from this perspective.
The paper is related as well to papers in which players publicly select actions while

aware of the possibility that they may subsequently become committed to those actions. In
the literature on bargaining, Crawford (1983), Kambe (1999) and Wolitsky (2011) develop
models of this general nature. In revision games, as introduced by Kamada and Kandori
(2011), players prepare strategies in advance and then have stochastic opportunities to
revise their actions. Relative to these papers, a distinguishing feature of the current paper
is that the leader takes an initial action or makes a promise about a future action after
becoming privately informed as to whether it is committed to that action or promise.18

16Some basic differences are: the model considered here studies the strategic value of leader commitment
separate from competitive behavior associated with multiple leaders, and it also includes settings (such
as the quantity-game setting) in which the follower has a rich action space rather than a binary vote.
17In particular, when the leader action (the signal) is set at the Nash level, the follower is not interested

in the leader’s type, since the leader’s final action then equals its “promised”Nash action whether the
leader is resolute or flexible. Also, the leader’s preference over beliefs depends on the level of the leader
action and specifically on whether the leader action is above, below or equal to the Nash action.
18For comparison, we can consider the complete-information game in which the follower and leader are

both initially uncertain of whether the leader will have the opportunity to modify the leader action. In
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Finally, the paper is related to research on games with uncertainty or private informa-
tion about timing. Kreps and Ramey (1987) illustrate the tension that can arise between
sequential rationality and structurally consistent beliefs (Kreps and Wilson, 1982a) when
players are uncertain about which player moves first. Kamada and Moroni (2017) study
dynamic games in which the timing of players’moves is private information, players choose
whether to incur a small cost and disclose their moves, and payoffs are determined by a
component game once all moves are made. They characterize conditions leading to a
unique perfect bayesian equilibrium outcome when the component games is a coordina-
tion game and when it is a game of opposing interests. Our focus and results are quite
different. We explore a two-period set up in which the identity of the leader is commonly
known, the leader is privately informed as to whether it is resolute (moves once) or flexible
(moves twice), and the leader action is publicly observed and serves as a potential signal.
We also show that traditional Stackelberg behavior is absent in the refined equilibrium.

3 Set up and general structure

In this section, we present some basic structural assumptions and characterize the Nash
equilibrium of the benchmark simultaneous-move game. The assumptions are motivated
by the Cournot game of quantity competition. We then define the game with private
resolve. We next characterize the “period-2 equilibrium quantities”that are functions of
the observed “leader quantity”and Firm 2’s resulting belief. We provide existence and
comparative-statics results for the period-2 equilibrium quantities. These properties are
used in the equilibrium analysis of the leader quantity in subsequent sections.

3.1 Nash benchmark

We begin with the benchmark of a simultaneous-move game, in which Firms 1 and 2
simultaneously select their quantities, q1 and q2, to maximize their payoffs, π1(q1, q2) and
π2(q1, q2), respectively. Firm i, i = 1, 2, chooses its quantity qi from its quantity space
Qi ≡ [0, qi) ⊂ <, where further discussion of qi > 0 is provided below.19

Throughout, we assume that π1(q1, q2) and π2(q1, q2) are twice-continuously differen-
tiable over Q1 ×Q2, where, for all (q1, q2) ∈ Q1 ×Q2,

∂2π1(q1, q2)

∂q12
< 0 and

∂2π2(q1, q2)

∂q22
< 0. (1)

that game, the leader would select the leader action at a level different from its Nash action. Once we
assume that the leader is privately informed about its resolve, however, the refinement as applied to the
reduced-form game directs attention to the Nash outcome.
19An alternative approach would be to specify that Qi = < and to define the best-response function for

each firm as the maximum of zero and the quantity that satisfies the corresponding first-order condition.
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Motivated by the Cournot game, we assume further that, for all (q1, q2) ∈ Q1 ×Q2,

∂2π1(q1, q2)

∂q1∂q2
< 0 and

∂2π2(q1, q2)

∂q1∂q2
< 0. (2)

We now define the best-response functions for the respective firms. Firm 1’s best-
response function, qbr1 (q2), is defined as the solution to the following first-order condition:

∂π1(q1, q2)

∂q1
= 0 at q1 = qbr1 (q2). (3)

Similarly, Firm 2’s best-response function, qbr2 (q1), is defined as the solution to the following
first-order condition:

∂π2(q1, q2)

∂q2
= 0 at q2 = qbr2 (q1). (4)

Observe that the second-order conditions hold by (1) and that the best-response functions
are decreasing by (2), as in the standard case.
The Nash output vector (qN1 , q

N
2 ) is defined as the simultaneous solution to (3) and (4):

qN1 = qbr1 (qN2 ) and qN2 = qbr2 (qN1 ). For i, j = 1, 2 and i 6= j, we now define qi by q
br
j (qi) = 0.

Thus, for example, q1 is the output level for Firm 1 at which Firm 2’s best-response
output is zero. We assume that

qbr1 (0) < q1 and q
br
2 (0) < q2, (5)

so that the monopoly output for any one firm is less than the upper bound of feasible
outputs for that firm at which the best response for the other firm is zero. Given that
the best-response functions are continuous, (5) ensures the existence of a Nash output
vector, (qN1 , q

N
2 ), satisfying qNi ∈ (0, qi). To ensure that the Nash output vector is unique,

we assume further that the reaction curves are stable; that is, at any (q1, q2) satisfying
q1 = qbr1 (q2) and q2 = qbr2 (q1), we assume that

∂qbr1 (q2)

∂q2
= −

∂2π1(q1,q2)
∂q1∂q2

∂2π1(q1,q2)
∂q12

> −
∂2π2(q1,q2)

∂q22

∂2π2(q1,q2)
∂q1∂q2

=
1

∂qbr2 (q1)

∂q1

. (6)

In a graph with q1 on the y axis and q2 on the x axis, (6) ensures that at any point
of intersection of the two best-response functions, qbr1 (q2) is flatter (less negative) than
qbr2 (q1). Using (6), we may conclude that a unique Nash output vector (qN1 , q

N
2 ) exists.

Summarizing, our assumptions generate continuous, decreasing best-response func-
tions which intersect at a single point, (qN1 , q

N
2 ), where qNi ∈ (0, qi) for i = 1, 2. Equiv-

alently, the simultaneous-move game admits a unique pure-strategy Nash equilibrium,
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(qN1 , q
N
2 ), where qNi ∈ (0, qi) for i = 1, 2.20 The best-response functions also exhibit a sta-

bility property, which ensures that qbr1 (q2) lies below (above) qbr2 (q1) for q1 > qN1 (q1 < qN1 )

for a graph with q1 on the y axis and q2 on the x axis. We maintain this structure
throughout our analysis of this model.
Finally, having defined the Nash outputs, we may now also define the Nash profits:

πN1 ≡ π1(q
N
1 , q

N
2 ) and πN2 ≡ π2(q

N
1 , q

N
2 ).

These payoffs represent the benchmark against which we will compare when considering
commitment with private resolve.

3.2 The Game with Private Resolve

We now define the game with private resolve. This game is an incomplete-information
game in which Nature selects whether Firm 1 is resolute or flexible, where the probability
that Firm 1 has resolve is r ∈ (0, 1). Firm 1 privately observes Nature’s choice. Firm 1
then selects its “leader quantity,” qL1 , in the first period. Firm 2 observes qL1 and forms
a belief b = b(qL1 ) as to the likelihood that Firm 1 is resolute. In the second period, the
flexible Firm 1 and Firm 2 simultaneously select their final quantities, q1 and q2. The
resolute Firm 1 has no choice in the second period (i.e., q1 ≡ qL1 when Firm 1 is resolute),
while the flexible Firm 1’s choice of q1 is unconstrained by its previous choice of qL1 .
Formally, let Qi ≡ [0, qi) be the quantity space for Firm i, where i = 1, 2. Let Firm

1’s type t be R, indicating resolute, or F , indicating flexible. Nature selects R with
probability r. Firm 1’s strategy for the game is then a leader quantity, qL1 : {R,F} → Q1,
and a final or “period-2 quantity,” q1 : Q1 → Q1, for the flexible Firm 1 where q1(qL1 )

can depend on qL1 but is not constrained by q
L
1 . Firm 2’s strategy is a final or “period-2

quantity,”q2 : Q1 → Q2. Firm 2’s belief function is b : Q1 → [0, 1], where b = b(qL1 ).

For a given leader quantity qL1 selected by Firm 1, the respective payoffs to the resolute
and flexible Firm 1 are given as

π1(q
L
1 , q2(q

L
1 )) and π1(q1(qL1 ), q2(q

L
1 )),

where q1(qL1 ) and q2(qL1 ) are the resulting period-2 quantity choices for the flexible Firm
1 and Firm 2, respectively. Firm 2’s expected payoff is then

b(qL1 ) · π2(qL1 , q2(qL1 )) + (1− b(qL1 )) · π2(q1(qL1 ), q2(q
L
1 ))

20Observe also that, given the concavity of the profit functions as captured in (1), the simultaneous-
move game does not admit a mixed-strategy equilibrium.
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Notice that Firm 1’s private information concerns its period-2 strategy space and not its
payoff function.

3.3 Period-2 equilibrium quantities

For a given leader quantity, qL1 , and a belief, b, we now represent and characterize the
period-2 interaction between the firms. In the period-2 subform indexed by the pair
(qL1 , b), Firm 1’s quantity is already determined as qL1 if resolute, Firm 1 selects q∗1(q

L
1 , b)

if flexible, and Firm 2 selects q∗2(q
L
1 , b), where we henceforth refer to q

∗
1(q

L
1 , b) and q

∗
2(q

L
1 , b)

as the period-2 equilibrium quantities.
We refer to q∗1(q

L
1 , b) and q

∗
2(q

L
1 , b) as the period-2 equilibrium quantities, since they

are the final quantities that would be chosen by the flexible Firm 1 and Firm 2 in the
continuation of any sequential equilibrium (Kreps and Wilson, 1982a) of the game.21

Formally, the period-2 equilibrium quantities satisfy mutual best-response conditions and
are thus defined as the solution to a standard system of first-order conditions. Given qL1
and b, q∗1(q

L
1 , b) solves

max
q1

π1(q1, q
∗
2(q

L
1 , b))

with first-order condition

∂π1(q1, q
∗
2(q

L
1 , b))

∂q1
= 0 at q1 = q∗1(q

L
1 , b). (7)

Similarly, given qL1 and b, q
∗
2(q

L
1 , b) solves

max
q2
{b · π2(qL1 , q2) + (1− b) · π2(q∗1(qL1 , b), q2)}

with first-order condition

b · ∂π2(q
L
1 , q2)

∂q2
+ (1− b) · ∂π2(q

∗
1(q

L
1 , b), q2)

∂q2
= 0 at q2 = q∗2(q

L
1 , b). (8)

We now make four observations. The first observation concerns the definition of the
Nash output vector. Recall that the Nash output vector (qN1 , q

N
2 ) is the simultaneous

solution to (3) and (4): qN1 = qbr1 (qN2 ) and qN2 = qbr2 (qN1 ). Clearly, the Nash output vector
equivalently can be defined by

(qN1 , q
N
2 ) ≡ (q∗1(q

L
1 , 0), q∗2(q

L
1 , 0)),

21Given the concavity of the profit functions as captured in (1), the flexible Firm 1 and Firm 2 do not
randomize in equilibirum with respect to their period-2 quantity choices.
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and thus corresponds to the situation in which Firm 1 is flexible and Firm 2 believes that
Firm 1 is flexible. Second, for any b ∈ [0, 1], the period-2 equilibrium quantity for the
flexible Firm 1 is its best response to Firm 2’s period-2 equilibrium quantity:

q∗1(q
L
1 , b) = qbr1 (q∗2(q

L
1 , b)). (9)

By contrast, the period-2 equilibrium quantity for Firm 2 need not be a best response to
the flexible Firm 1’s period-2 equilibrium quantity, since Firm 2 must allow as well that
Firm 1 could be a resolute type whose output choice is qL1 . Third, for the case in which
b = 1 so that Firm 2 holds a belief that Firm 1 has resolve, the period-2 equilibrium
quantities are given as

q∗1(q
L
1 , 1) = qbr1 (qbr2 (qL1 )) and q∗2(q

L
1 , 1) = qbr2 (qL1 ), (10)

since in that case Firm 2 best responds to qL1 and as (9) indicates the flexible Firm 1 best
responds to Firm 2’s choice.
Finally, our fourth observation is that, for all (qL1 , b) ∈ Q1 × [0, 1], the period-2 equi-

librium quantities, (q∗1(q
L
1 , b), q

∗
2(q

L
1 , b)), satisfying (7) and (8) exist and satisfy q

∗
1(q

L
1 , b) ∈

(0, qi) for i = 1, 2. We have already covered the cases where b ∈ {0, 1}. To see the
argument for b ∈ (0, 1), suppose qL1 > qN1 . Our approach is to consider different values for
q2 with q1 then set as q1 = qbr1 (q2) as suggested by (9). Start with q2 = qN2 in which case
q1 = qN1 . It is clear that q2 = qN2 is too high to satisfy (8) when q

L
1 > qN1 and q

∗
1(q

L
1 , b) is

replaced with q1 = qN1 . Next, consider the opposite extreme with q2 = qbr2 (qL1 ) in which
case q1 = qbr1 (q2). It is direct to confirm that q1 so defined satisfies q1 ∈ (qN1 , q

L
1 ). It is now

clear that q2 = qbr2 (qL1 ) is too low to satisfy (8) when qL1 > qN1 and q
∗
1(q

L
1 , b) is replaced with

q1 = qbr1 (q2). We can now conclude that there exists q2 ∈ (qbr2 (qL1 ), qN2 ) with q1 defined by
q1 = qbr1 (q2) such that q1 = q∗1(q

L
1 , b) and q2 = q∗2(q

L
1 , b) satisfy (7) and (8) and thus consti-

tute period-2 equilibrium quantities. Other cases can be handled similarly.22 We assume
further that the period-2 equilibrium is unique and stable for all (qL1 , b) ∈ Q1 × [0, 1].23

Building from these observations, we now provide a lemma that provides helpful struc-
ture for some of the analysis that follows.

Lemma 1 Fix b ∈ (0, 1).

If qL1 > qN1 , then q
L
1 > q∗1(q

L
1 , b) > qN1 and q

N
2 > q∗2(q

L
1 , b) > qbr2 (qL1 ).

If qL1 < qN1 , then q
L
1 < q∗1(q

L
1 , b) < qN1 and q

N
2 < q∗2(q

L
1 , b) < qbr2 (qL1 ).

The proof of Lemma 1 is in Appendix A.

22The case in which qL1 = qN1 is addressed in further detail in Lemma 3.
23Stability ensures that the Jacobian determinant associated with the first-order conditions (7) and (8)

is positive. We use this property in deriving the comparative statics properties below in (11) and (12).
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As Figure 1 illustrates for a setting with b ∈ (0, 1), a key point is that the period-2
equilibrium quantities are pulled away from the Nash output vector and in the direction
suggested by the leader output. Hence, if qL1 > qN1 , then Firm 2 recognizes that a resolute
Firm 1 will produce the high output qL1 and is thus encouraged to lower its output choice.
Firm 2’s lower output choice in turn encourages the flexible Firm 1 to increase its output as
a best response, which further encourages a reduction in Firm 2’s output. In the end, Firm
2’s output choice, q∗2(q

L
1 , b), lies between its best responses to the output of the resolute

Firm 1, qL1 , and the output of the flexible Firm 1, q∗1(q
L
1 , b). With q

∗
1(q

L
1 , b) > qN1 , it then

follows that qN2 > q∗2(q
L
1 , b) > qbr2 (qL1 ), as Lemma 1 indicates. Notice also that a flexible

Firm 1 selects its best-response output below that of a resolute Firm 1, q∗1(q
L
1 , b) < qL1 ,

when qL1 > qN1 . The defining feature of the standard Stackelberg model - that the leader
commits to a quantity above its best response to the follower’s output - thus carries over
to this setting as well when qL1 > qN1 .

We next extend Lemma 1 in a straightforward way to include the case in which b = 1

so that Firm 2 holds a belief that Firm 1 has resolve.

Lemma 2 Fix b = 1.

If qL1 > qN1 , then q
L
1 > q∗1(q

L
1 , 1) > qN1 and q

N
2 > q∗2(q

L
1 , 1) = qbr2 (qL1 ).

If qL1 < qN1 , then q
L
1 < q∗1(q

L
1 , 1) < qN1 and q

N
2 < q∗2(q

L
1 , 1) = qbr2 (qL1 ).

Lemma 2 is proved in Appendix A. Notice that Lemma 2 takes the same form as Lemma
1, with the exception that q∗2(q

L
1 , 1) = qbr2 (qL1 ) when b = 1.

Lemmas 1 and 2 do not consider the case in which qL1 = qN1 . As we confirm in
the following lemma, for any b ∈ [0, 1], the Nash output vector is achieved as period-2
equilibrium quantities when qL1 = qN1 .

Lemma 3 For any b ∈ [0, 1], (q∗1(q
N
1 , b), q

∗
2(q

N
1 , b)) = (qN1 , q

N
2 ).

Lemma 3 is proved in Appendix A. Intuitively, if Firm 1 selects its Nash output as its
leader quantity, qN1 = qL1 , then the relevance of the distinction between a resolute and
flexible Firm 1 is removed and the Nash outcome is thus assured. As we confirm below
after defining our equilibrium concept, this finding provides a natural lower bound for
Firm 1’s equilibrium profit.
We now complete our characterization of the period-2 Nash quantities by providing

some comparative statics. It is direct to confirm the following properties: for b ∈ (0, 1),

∂q∗1(q
L
1 , b)

∂qL1
> 0 >

∂q∗2(q
L
1 , b)

∂qL1
, (11)
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and

∂q∗1(q
L
1 , b)

∂b
> 0 >

∂q∗2(q
L
1 , b)

∂b
if qL1 > q∗1(q

L
1 , b) (12)

∂q∗1(q
L
1 , b)

∂b
= 0 =

∂q∗2(q
L
1 , b)

∂b
if qL1 = q∗1(q

L
1 , b)

∂q∗1(q
L
1 , b)

∂b
< 0 <

∂q∗2(q
L
1 , b)

∂b
if qL1 < q∗1(q

L
1 , b).

Thus, for given beliefs b ∈ (0, 1), an increase in qL1 raises the expected output by Firm 1,
leading Firm 2 to respond with a lower value of q∗2(q

L
1 , b). This response in turn induces

the flexible Firm 1 to expand its output, q∗1(q
L
1 , b). Similarly, for a given q

L
1 , an increase

in b ∈ (0, 1) causes Firm 2 to weigh more (less) heavily qL1 (q
∗
1(q

L
1 , b)) when forming an

expectation of Firm 1’s output, so that Firm 2 reduces (raises) its output q∗2(q
L
1 , b) if

qL1 > q∗1(q
L
1 , b) (q

L
1 < q∗1(q

L
1 , b)). The flexible Firm 1 anticipates this reaction by Firm 2

and adjusts its output q∗1(q
L
1 , b) in the opposite direction. Of course, if q

L
1 = q∗1(q

L
1 , b),

then a change in b has no effect on q∗2(q
L
1 , b) nor therefore on q

∗
1(q

L
1 , b).

4 Equilibrium analysis of the reduced-form game

In this section, we embed our analysis of the period-2 equilibrium quantities directly
into the payoff functions. We refer to the resulting game as a “reduced-form game,”
and we define an equilibrium for this game. We then characterize pooling and separating
equilibria, and we show that the equilibrium value for the resolute Firm 1’s leader quantity
is never below its Nash output for the simultaneous-move game.24

4.1 The reduced-form game

In any sequential equilibrium of the game with private resolve, and for any qL1 ∈ Q1, the
period-2 quantities of the flexible Firm 1 and Firm 2, respectively, satisfy q1(qL1 ) = q∗1(q

L
1 , b)

and q2(qL1 ) = q∗2(q
L
1 , b) when Firm 2 forms the belief b = b(qL1 ) after observing qL1 . Building

from this property, we now embed the final outputs - q1 = qL1 for the resolute Firm 1,
q1 = q∗1(q

L
1 , b) for the flexible Firm 1, and q2 = q∗2(q

L
1 , b) for Firm 2 - directly into the payoff

structure of a reduced-form game. In the reduced-form game, a strategy for Firm 1 is
then just a leader-quantity strategy defined by a mapping from the type space, {R,F},
to the output space, Q1, while Firm 2 simply forms a belief.

Definition 1 In the reduced-form game, Firm 1 observes its type t and selects its leader

24As noted in the Introduction, some results in this section have counterparts in Dai’s (2017) work,
although for a distinct application.
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quantity, qL1 , which induces a belief b = b(qL1 ) by Firm 2 and leads to the following payoffs:

π1(q
L
1 , q

∗
2(q

L
1 , b)) for the resolute Firm 1

π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b)) for the flexible Firm 1

b · π2(qL1 , q∗2(qL1 , b)) + (1− b) · π2(q∗1(qL1 , b), q∗2(qL1 , b)) for Firm 2

Recall that q∗1(q
L
1 , b) and q

∗
2(q

L
1 , b) as used in this definition uniquely satisfy the system of

first-order conditions in (7) and (8).25

4.2 Equilibrium concept and a lower bound on profits

We are now ready to define a sequential equilibrium for the reduced-form game.

Definition 2 An equilibrium is a triplet {qL1 (R), qL1 (F ), b(qL1 )} such that

qL1 (R) ∈ arg max
qL1 ∈Q1

π1(q
L
1 , q

∗
2(q

L
1 , b(q

L
1 )))

qL1 (F ) ∈ arg max
qL1 ∈Q1

π1(q
∗
1(q

L
1 , b(q

L
1 )), q∗2(q

L
1 , b(q

L
1 )))

If qL1 (R) = qL1 (F ), then b(qL1 (R)) = r

If qL1 (R) 6= qL1 (F ), then b(qL1 (R)) = 1 > 0 = b(qL1 (F ))

Thus, whatever its type, Firm 1 selects the leader quantity that maximizes its profit given
the belief function of Firm 2. In turn, Firm 2’s beliefs must obey Bayes’rule whenever
possible. Notice that we focus on pure-strategy equilibria.26

A pooling equilibrium occurs when qL1 (R) = qL1 (F ), and in this case the belief function
must satisfy b(qL1 (R)) = r. A separating equilibrium occurs when qL1 (R) 6= qL1 (F ), and in
this case b(qL1 (R)) = 1 > 0 = b(qL1 (F )). For leader quantities that are off the equilibrium
path (i.e., for qL1 /∈ {qL1 (R), qL1 (F )}), the belief function is unrestricted. As is familiar from
signaling games, this freedom in specifying beliefs for off-the-equilibrium-path actions is
a source of multiple equilibria.
For the reduced-form game, an equilibrium outcome is defined by the pair {qL1 (R), qL1 (F )}.

The embedded period-2 equilibrium quantities can be easily recovered from this pair. If

25The game with private resolve is not a standard signaling game, since a flexible Firm 1 moves twice.
By constructing the reduced-form game, we represent the interaction in a signaling-game format but with
the special feature that Firm 2 has no response beyond the formation of its belief. We define equilibrium
and the refinement (in Section 5) relative to the reduced-form game. Other work that studies reduced-
form signaling games includes, for example, Bagwell (2007), Bernheim (1994), Bernheim and Severinov
(2003) and Kartik and Frankel (2017). Reduced-form payoffs are also commonly used to study signaling
in financial markets, where the market is the “receiver”and forms a belief (see, e.g., Ross 1977).
26As we discuss in Section 5.5, our key findings continue to hold when mixed strategies are allowed.
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qL1 (R) = qL1 (F ), then the period-2 equilibrium quantities are q∗1(q
L
1 (R), r) and q∗2(q

L
1 (R), r);

and if qL1 (R) 6= qL1 (F ), then the period-2 equilibrium quantities are q∗1(q
L
1 (R), 1) and

q∗2(q
L
1 (R), 1) following qL1 = qL1 (R) and likewise q∗1(q

L
1 (F ), 0) and q∗2(q

L
1 (F ), 0) following

qL1 = qL1 (F ).

The equilibrium payoffs for the two types of Firm 1 are now given as

Π1(R) ≡ π1(q
L
1 (R), q∗2(q

L
1 (R), b(qL1 (R))) (13)

Π1(F ) ≡ π1(q
∗
1(q

L
1 (F ), b(qL1 (F ))), q∗2(q

L
1 (F ), b(qL1 (F )))

Thus, in a separating equilibrium, the equilibrium payoffs for the resolute and flexible
types of Firm 1 are, respectively,

π1(q
L
1 (R), q∗2(q

L
1 (R), 1)) and π1(q∗1(q

L
1 (F ), 0), q∗2(q

L
1 (F ), 0)).

Similarly, in a pooling equilibrium, the equilibrium payoffs for the resolute and flexible
types of Firm 1 are respectively given as

π1(q
L
1 (R), q∗2(q

L
1 (R), r)) and π1(q∗1(q

L
1 (F ), r), q∗2(q

L
1 (F ), r)),

where of course qL1 (R) = qL1 (F ) in a pooling equilibrium.
We may now state the following corollary to Lemma 3:

Corollary 1 In any equilibrium, Π1(R) ≥ πN1 and Π1(F ) ≥ πN1 .

Using Lemma 3, the simple observation in Corollary 1 is that, regardless of its type, Firm
1 always has the option of achieving its Nash payoffby setting a leadership quantity equal
to its Nash output, qL1 = qN1 .
With Corollary 1 in hand, we next characterize equilibrium payoffs and behavior in

pooling and separating equilibria.

4.3 Pooling equilibria

Our first result for pooling equilibria characterizes the relationship between Π1(F ) and
Π1(R), depending on whether pooling occurs at Firm 1’s Nash output or at another leader
quantity value.

Proposition 1 Fix a pooling equilibrium. If qL1 (R) 6= qN1 , then Π1(F ) > Π1(R); and if
qL1 (R) = qN1 , then Π1(F ) = Π1(R).

The proof of Proposition 1 is in Appendix A.
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Intuitively, even though qL1 (R) = qL1 (F ) and thus q∗2(q
L
1 (R), r) = q∗2(q

L
1 (F ), r) in a

pooling equilibrium, a flexible Firm 1 does at least as well as a resolute Firm 1 in a
pooling equilibrium, since the flexible Firm 1 can best respond against Firm 2’s output.
The only case in which the flexible Firm 1 does not do better than the resolute Firm 1 is
when pooling occurs at Firm 1’s Nash output, as then by Lemma 3 both types of Firm 1
best respond against the resulting Nash output of Firm 2.
We next show that a pooling equilibrium exists in which the both types of Firm 1

select the Nash output as the leader quantity.

Proposition 2 There exists a pooling equilibrium in which qL1 (R) = qL1 (F ) = qN1 .

The proof of Proposition 2 is in Appendix A.
The key idea here is that, if pooling occurs at the Nash output and if any deviant

leader quantity elicits the belief that Firm 1 is flexible, then Firm 2’s period-2 quantity is
its Nash output, independent of the leader quantity that Firm 1 selects. Below, we refer
to the described beliefs - where b(qL1 ) = 0 for any deviant qL1 - as “punishing”beliefs, since
Firm 2 then believes that an observed deviant leader quantity comes from a flexible Firm
1 and will have no direct bearing on Firm 1’s final output selection.27

We define the Nash pooling equilibrium as the pooling equilibrium in which qL1 (R) =

qL1 (F ) = qN1 and b(qL1 ) = 0 for all qL1 6= qN1 . Notice that the Nash pooling equilibrium
uses the punishing belief specification (i.e., b(qL1 ) = 0 for all qL1 6= qN1 ). The Nash pooling
equilibrium is thus the pooling equilibrium constructed in the proof of Proposition 2, and
so Proposition 2 establishes the existence of the Nash pooling equilibrium. Of course,
other belief specifications can be used to support a pooling equilibrium in which qL1 (R) =

qL1 (F ) = qN1 . Allowing for alternative belief specifications, we define the Nash pooling
equilibrium outcome by {qL1 (R), qL1 (F )} = {qN1 , qN1 }.
Let us now say that a pooling equilibrium outcome {qL1 (R), qL1 (F )} = {qL1 , qL1 } is r -

robust if a pooling equilibrium with qL1 (R) = qL1 (F ) = qL1 exists for all r ∈ (0, 1). As
Proposition 2 confirms, the Nash pooling equilibrium exists for any value of r ∈ (0, 1),

and so the Nash pooling equilibrium outcome is thus r-robust. The following proposition
establishes that no other pooling equilibrium outcome is r-robust.

Proposition 3 The unique pooling equilibrium outcome that is r-robust is the Nash pool-
ing equilibrium outcome.

The proof of Proposition 3 is in Appendix A.
Intuitively, for any fixed qL1 6= qN1 , a pooling equilibrium at qL1 must fail to exist as r

approaches zero, since a resolute Firm 1 is then sure to gain by deviating from qL1 (R) = qL1

27As discussed further in the Introduction, Kim (2009) finds a related no-commitment equilibrium for
his continuous-time, gap-case model of the durable-goods monopoly problem.
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to qN1 . The only pooling equilibrium outcome that is robust to arbitrarily low specifications
for r is therefore the Nash pooling equilibrium outcome.
Our preceding discussion indicates that there is limited scope for the existence of a

pooling equilibrium outcome that is robust to arbitrarily low values for r. While an r-
robust pooling equilibrium outcome has attractive features, if we are interested in whether
traditional Stackelberg arguments are robust to the introduction of a small degree of
private information concerning Firm 1’s resolve, then the fact that pooling equilibria
associated with a given leader quantity fail to exist when Firm 1 is almost certain to
lack resolve (i.e., when r is arbitrarily close to zero) may not be of great concern. For
this question, we would be more interested to understand behavior as we move from the
complete-information setting corresponding to r = 1 to a private-information setting in
which r is close to unity.
Motivated by these considerations, we now construct a class of pooling equilibria that

is parameterized by r. Let us define the generalized Stackelberg quantity, qgs1 (r), as the
solution to the following maximization program:

max
qL1

π1(q
L
1 , q

∗
2(q

L
1 , r)).

The generalized Stackelberg solution corresponds to the traditional Stackelberg solution
when r = 1 and to the Nash output, qN1 , when r = 0. The first-order condition for the
maximization problem is given as

∂π1(q
L
1 , q

∗
2(q

L
1 , r))

∂q1
+
∂π1(q

L
1 , q

∗
2(q

L
1 , r))

∂q2
· ∂q

∗
2(q

L
1 , r)

∂qL1
= 0 at qL1 = qgs1 (r). (14)

We now assume that the associated second-order condition holds with strict inequality for
any r ∈ (0, 1). Our previous assumptions suffi ce to ensure that the second-order condition
holds as well in the limiting case of r = 0, and to ensure that the standard Stackelberg
solution is well-defined we assume further that the second-order condition holds with strict
inequality, too, for the limiting case where r = 1.
To characterize the generalized Stackelberg solution, we now assume further that a

higher quantity by Firm 2 results in a negative externality for Firm 1’s profit:

∂π1(q1, q2)

∂q2
< 0. (15)

This externality assumption is standard in models of Cournot competition, and captures
there the simple idea that higher rival output lowers the market-clearing price. When we
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combine (3) and (15), we see further that

dπ1(q
br
1 (q2), q2)

dq2
< 0, (16)

which indicates that Firm 1’s profit rises as q2 is reduced and q1 is adjusted along Firm
1’s best-response function.
Returning to our characterization of the generalized Stackelberg solution, if we combine

(15) with our earlier finding from (11) that ∂q∗2(q
L
1 ,r)

∂qL1
< 0, then we see from (14) that

∂π1(qL1 ,q
∗
2(q

L
1 ,r))

∂q1
< 0 at qL1 = qgs1 (r). Using (7) with b = r, we conclude that

qgs1 (r) > q∗1(q
gs
1 (r), r) = qbr1 (q∗2(q

gs
1 (r), r)), (17)

where the equality in (17) uses (9). Using Lemmas 1 and 3, we conclude from (17) that

qgs1 (r) > qN1 . (18)

Thus, the generalized Stackelberg solution exceeds the Nash quantity.
We can now state the following proposition:

Proposition 4 There exists a pooling equilibrium in which qL1 (R) = qL1 (F ) = qgs1 (r).

The proof of Proposition 4 is in Appendix A.
Proposition 4 establishes that the generalized Stackelberg solution can be captured in

the reduced-form game as a pooling equilibrium. Furthermore, as r rises toward unity, the
corresponding equilibrium behavior and payoffs for the resolute Firm 1 and Firm 2 ap-
proach those achieved in the traditional Stackelberg solution of the complete-information
game. From this perspective, the introduction of a slight degree of private information
concerning Firm 1’s resolve does not require a discontinuous change in behavior or pay-
offs. Below, we return to this issue when using a refined equilibrium concept for the
reduced-form game. As we will see, this concept does not permit the “punishing”beliefs
of b(qL1 ) = 0 for qL1 6= qgs1 (r) which are used in the proof of Proposition 4 to support the
pooling equilibrium.

4.4 Separating equilibria

In a separating equilibrium, the flexible Firm 1 is revealed, and so b(qL1 (F )) = 0. The Nash
output vector thus obtains when Firm 1 is the flexible type: (qN1 , q

N
2 ) ≡ (q∗1(q

L
1 , 0), q∗2(q

L
1 , 0)).

The resolute type of Firm 1 is also revealed in a separating equilibrium, and so b(qL1 (R)) =

1. When Firm 1 is the resolute type, the final quantities are thus (qL1 (R), q∗2(q
L
1 (R), 1)) =
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(qL1 (R), qbr2 (qL1 (R))). Given these observations, in any separating equilibrium, Firm 1’s
payoffs are Π1(F ) = πN1 and Π1(R) = π1(q

L
1 (R), q∗2(q

L
1 (R), 1)).

For a separating equilibrium to obtain, the flexible Firm 1 must prefer to select qL1 (F )

and induce the belief b(qL1 (F )) = 0 than to mimic qL1 (R) and induce the belief b(qL1 (F )) =

1. The no-mimic constraint thus takes the form

πN1 = π1(q
N
1 , q

N
2 ) = π1(q

∗
1(q

L
1 (F ), 0), q∗2(q

L
1 (F ), 0)) ≥ π1(q

∗
1(q

L
1 (R), 1), q∗2(q

L
1 (R), 1)).

Since Firm 1 is best responding on both sides of the inequality, with q∗1(q
L
1 (F ), 0) =

qbr1 (qN2 ) and q∗1(q
L
1 (R), 1) = qbr1 (q∗2(q

L
1 (R), 1)), we may use (16) to conclude that qN2 =

q∗2(q
L
1 (F ), 0) ≤ q∗2(q

L
1 (R), 1). Next, recall that qN2 is a best response for Firm 2 to qN1 , and

also that q∗2(q
L
1 (R), 1) is a best response for Firm 2 to qL1 (R). Given that Firm 2’s best-

response function is decreasing, it thus follows from qN2 ≤ q∗2(q
L
1 (R), 1) that the no-mimic

constraint can hold only if qN1 ≥ qL1 (R).
Suppose then that qN1 > qL1 (R). The resolute Firm 1’s equilibrium payoff would then

be below its Nash equilibrium payoff,

Π1(R) = π1(q
L
1 (R), q∗2(q

L
1 (R), 1)) < π1(q

N
1 , q

N
2 ) = πN1 ,

since in each case Firm 2 best responds and under our assumptions Firm 1’s Stackelberg
payoff function, π1(qL1 , q

∗
2(q

L
1 , 1)), is strictly concave with qgs1 (1) > qN1 following from (18).

We then have a contradiction with Corollary 1. Thus, qL1 (R) = qN1 in a separating
equilibrium.
Given that a separating equilibrium is possible only if qL1 (R) = qN1 , the resolute Firm

1 must earn its Nash profit, πN1 , in any separating equilibrium. Recalling that we argue
above that Π1(F ) = πN1 , we may summarize our findings to this point on separating
equilibria with the following proposition:

Proposition 5 In any separating equilibrium, qL1 (R) = qN1 and Π1(R) = Π1(F ) = πN1 .

Thus, in any separating equilibrium, we have that qL1 (R) = qN1 6= qL1 (F ), where the
alternative leader quantity selected by the flexible Firm 1 is incidental. Whether Firm 1
is flexible or resolute, its final output choice is qN1 , against which Firm 2 best responds by
choosing qN2 . For all practical purposes, the separating equilibria identified in Proposition
5 are thus equivalent to the Nash pooling equilibrium identified in Proposition 2.

4.5 A lower bound on the qL1 (R)

Our results above take two forms. First, Corollary 1 considers the full class of equilibria
and establishes a lower bound for Π1(R) and Π1(F ). Second, we consider pooling and
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separating equilibria, respectively, and provide characterization results for each of these
two classes of equilibria. Proposition 5 offers a general characterization for any separating
equilibrium, and Proposition 1 establishes that Π1(F ) ≥ Π1(R) in any pooling equilib-
rium. While we construct specific pooling equilibria in Propositions 2 and 4, we do not
examine how the full set of pooling equilibria varies with r.
Against this backdrop, we now is to consider the full class of equilibria and establish a

lower bound for the resolute Firm 1’s equilibrium leader quantity, qL1 . In particular, using
Lemma 1 and (16), we establish that in equilibrium the resolute Firm 1 never chooses a
leader quantity below its Nash output.

Proposition 6 In any equilibrium, qL1 (R) ≥ qN1 .

The proof of Proposition 6 is in Appendix A. The proof complements Proposition 5 and
shows that a resolute Firm 1 would deviate and set its leader quantity equal to qN1 if a
pooling equilibrium were posited in which qL1 (R) < qN1 .

5 Refined Equilibria

Having now offered equilibrium characterization results, we consider in this section the
equilibria that survive as “refined”equilibria. To this end, we define a refinement for our
reduced-form game that is motivated by the D1 refinement for signaling games.28 We show
that the Nash pooling equilibrium as constructed in Proposition 2 is refined. We then
show further that no other pooling equilibrium outcome is refined. The end result is thus
that refined equilibria exist, and in any refined equilibrium the final outputs are the Nash
outputs, (qN1 , q

N
2 ), with each firm thus earning its Nash profits. From this perspective,

our results indicate a sense in which the strategic advantage of commitment may be lost
when the leader has private information about its resolve. We also consider alternative
refinement criteria, mixed-strategy equilibria, and the ways in which the payoff functions
considered here differ from those in standard signaling models.

5.1 Definition

To define the refinement, we begin by considering the gain from a deviation from an
equilibrium. For a deviation qL1 /∈ {qL1 (R), qL1 (F )} and associated belief b = b(qL1 ), the
gain from deviation for Firm 1 of types R and F , respectively, is

∆R(qL1 , b) ≡ π1(q
L
1 , q

∗
2(q

L
1 , b))− Π1(R) (19)

∆F (qL1 , b) ≡ π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))− Π1(F )

28See Cho and Kreps (1987) and Fudenberg and Tirole (1991, Chapter 11) for further discussion of the
D1 refinement in signaling games.
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where Π1(R) and Π1(F ) are the respective payoffs to the resolute and flexible types of
Firm 1 in the given equilibrium. As (19) indicates, in the reduced-form game, a deviant
leader quantity qL1 and associated belief b induces the period-2 equilibrium quantities
associated with that leader quantity and belief, q∗1(q

L
1 , b) and q

∗
2(q

L
1 , b).

It is not immediately clear whether ∆R(qL1 , b) is larger or smaller than ∆F (qL1 , b). On
the one hand, as confirmed in Propositions 1 and 5, the flexible Firm 1 earns at least as
high of an equilibrium payoff as the resolute Firm 1. Specifically, for pooling equilibria,
Π1(F ) > Π1(R) if qL1 (R) 6= qN1 , and Π1(F ) = Π1(R) if qL1 (R) = qN1 ; and for separating
equilibria, Π1(F ) = Π1(R). The key point is that the flexible Firm 1 has an advantage,
since it can move away from its leader output and best respond against the induced period-
2 equilibrium quantity from Firm 2. A similar logic also applies, however, when a deviant
leader quantity is selected. Given a deviation qL1 /∈ {qL1 (R), qL1 (F )} and an associated
belief b = b(qL1 ), if q∗1(q

L
1 , b) 6= qL1 , then the flexible Firm 1 also enjoys a greater deviation

payoff. We return to the relationship between ∆R(qL1 , b) and ∆F (qL1 , b) in greater detail
below, since this relationship is fundamental to the refinement that we now define.
To that end, let us define the respective belief values for which the gain from deviation

is positive or zero. For the flexible type of Firm 1, these sets are defined as:

DF (qL1 ) ≡ {b ∈ [0, 1]|∆F (qL1 , b) > 0} (20)

DF
0 (qL1 ) ≡ {b ∈ [0, 1]|∆F (qL1 , b) = 0}

For the resolute type of Firm 1, we may similarly define

DR(qL1 ) ≡ {b ∈ [0, 1]|∆R(qL1 , b) > 0} (21)

DR
0 (qL1 ) ≡ {b ∈ [0, 1]|∆R(qL1 , b) = 0}

Motivated by the D1 refinement for signaling games, we are now ready to define a refined
equilibrium for the reduced-form game.

Definition 3 A refined equilibrium is an equilibrium such that, for qL1 /∈ {qL1 (R), qL1 (F )},

if DF (qL1 ) ∪DF
0 (qL1 ) v DR(qL1 ) and DR(qL1 ) 6= ∅, then b(qL1 ) = 1; and (22)

if DR(qL1 ) ∪DR
0 (qL1 ) v DF (qL1 ) and DF (qL1 ) 6= ∅, then b(qL1 ) = 0.

To understand the idea behind the refinement, suppose that a deviant quantity qL1 /∈
{qL1 (R), qL1 (F )} is observed that satisfies DF (qL1 ) ∪ DF

0 (qL1 ) v DR(qL1 ) and DR(qL1 ) 6= ∅.
This means that the set of beliefs b for Firm 2 under which the resolute Firm 1 enjoys a
gain from the deviation includes all of the beliefs under which the flexible Firm 1 weakly
gains from the deviation and that there indeed exists some belief under which the resolute

25



Firm 1 would enjoy a gain from the deviation.29 It then seems natural for Firm 2 to believe
that such a deviation is more likely to come from the resolute Firm 1 than the flexible
Firm 1. The refinement takes this logic to its limit and holds that the deviation is then
infinitely more likely to have come from a resolute Firm 1. While the D1 refinement is
commonly used in the signaling-game literature, the associated restriction on beliefs may
seem strong. After developing our findings, we return to this issue in Section 5.3 and
argue that our findings also hold when a milder restriction on beliefs is imposed.30

With our notion of a refined equilibrium now defined, we consider in turn two ques-
tions. First, is the Nash pooling equilibrium as constructed in Proposition 2 a refined
equilibrium? Second, can any other pooling equilibrium outcome be supported by a re-
fined equilibrium? In organizing our analysis in this way, we focus on pooling equilibria
and ignore separating equilibria. In terms of predicted outcomes, however, this focus is
inconsequential. We recall from Proposition 5 all separating equilibrium induce the same
equilibrium final quantities as does the Nash pooling equilibrium. Thus, the distinction
between separating equilibria and the Nash pooling equilibrium is in this respect only cos-
metic. We return to this issue at the end of Section 5.4 and describe there the implications
of our results for the full set of refined equilibria.

5.2 Is the Nash pooling equilibrium refined?

Consider then the Nash pooling equilibrium analyzed in Proposition 2 and defined by
qL1 (R) = qL1 (F ) = qN1 , b(q

N
1 ) = r, and b(qL1 ) = 0 for all qL1 6= qN1 .We establish now that the

Nash pooling equilibrium is a refined equilibrium. The key point is that this equilibrium
has a special feature: Firm 1 makes the same equilibrium payoff whether it is resolute or

29For standard signaling games, the D1 refinement defines the “D”and “D0”sets with respect to the
mixed-strategy best responses of the receiver for different possible beliefs. The use of mixed-strategy best
responses may be replaced with best responses when the receiver’s best response is a singleton. With our
analysis of the reduced-form game, we embed the period-2 best responses of the flexible Firm 1 and Firm
2 into the payoffs of the reduced-form game and define the “D”and “D0”sets in terms of belief sets. We
then apply the proposed refinement to the reduced-form game. Recall that the period-2 best responses
of Firms 1 and 2 are uniquely determined given the leader quantity and belief (see footnote 21).
30The definition of a refined equilibrium used here incorporates elements of backward and forward

induction. Backward induction is reflected in the use of the sequential equilibrium concept, and a form
of forward induction is captured in the belief restrictions in (22). Kohlberg and Mertens (1986) define
stable sets of Nash equilibria for finite games and associate forward induction with the elimination of never
weak best response strategies in that context. We do not formally explore the relationship between the
refinement used here and stable sets of Nash equilibria, but we do show in the Supplementary Appendix
that the belief restriction given in (22) can also be motivated by the following experiment. Consider the
game with private resolve as defined in Section 3.2 and fix a sequential equilibrium outcome. Consider
the set of all sequential equilibria for that game giving rise to this outcome, and suppose that there exists
a deviant leader quantity that is not selected by any sequential equilibrium supporting this outcome. If
we eliminate strategies that are never weak best responses to any sequential equilibrium in this set, then
any sequential equilibrium of the resulting game must sastisfy the belief restriction given in (22).
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flexible, Π1(F ) = Π1(R). Since the flexible Firm 1 has a greater benefit from deviating, a
belief function that assigns deviations to the flexible type - i.e., which specifies b(qL1 ) = 0

for all qL1 6= qN1 - is sure to satisfy the additional condition (22) for a refined equilibrium.
Formally, consider any deviant leader quantity qL1 6= qN1 . Clearly, if b = 0, then Firm

2’s period-2 quantity is unchanged, q∗2(q
L
1 , 0) = qN2 . Since q

N
1 is a best response to qN2

and qL1 6= qN1 is thus not a best response to qN2 , the resolute Firm 1 is sure to lose from
the deviation under this belief: ∆R(qL1 , 0) < 0. By contrast, following a deviant leader
quantity qL1 6= qN1 that induces a belief of b = 0, the flexible Firm 1 still sets its period-2
quantity at qN1 . We thus have that ∆F (qL1 , 0) = 0. We conclude that

b = 0 /∈ DR(qL1 ) ∪DR
0 (qL1 ) and b = 0 ∈ DF

0 (qL1 ). (23)

By (23), b = 0 ∈ DF (qL1 ) ∪DF
0 (qL1 ) and yet b = 0 /∈ DR(qL1 ). This is enough to conclude

that our specification of b(qL1 ) = 0 for all qL1 6= qN1 satisfies the refinement condition (22).
We thus may now report our finding with regard to our first question:

Proposition 7 The Nash pooling equilibrium is a refined equilibrium.

Before proceeding to our second question, we make four additional points. First, while
our arguments above apply to any qL1 6= qN1 , the specification of beliefs for q

L
1 < qN1 is not

significant, since neither the resolute nor flexible Firm 1 can gain from a deviation to such
a leader quantity. Second, our arguments concerning the Nash pooling equilibrium and
its existence as a refined equilibrium are quite general and do not require the additional
assumptions made above (such as (15) and the conditions for the existence of a generalized
Stackelberg solution) that we imposed to establish Proposition 4. Third, the plausibility
of the belief specification is further enhanced by noting that, if we find b > 0 such that
the resolute Firm 1 weakly gains from deviating to qL1 6= qN1 , then it must be true that
the flexible Firm 1 gains from the deviation.31

To establish this third point, let us consider any deviant leader quantity qL1 6= qN1 and
suppose that we find b > 0 such that ∆R(qL1 , b) ≥ 0. It then follows that

0 ≤ ∆R(qL1 , b) = π1(q
L
1 , q

∗
2(q

L
1 , b))− Π1(R)

= π1(q
L
1 , q

∗
2(q

L
1 , b))− Π1(F )

< π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))− Π1(F ) = ∆F (qL1 , b),

where the second equality utilizes Π1(F ) = Π1(R) at the Nash pooling equilibrium and
the strict inequality follows since q∗1(q

L
1 , b) = qbr1 (q∗2(q

L
1 , b)) by (9) and q

L
1 6= q∗1(q

L
1 , b) by

31Indeed, the refinement thus requires that b(qL1 ) = 0 for qL1 6= qN1 if we can find b > 0 such that
∆R(qL1 , b) ≥ 0. The Nash pooling equilibrium obviously satisfies this requirement. In Proposition 9, we
build on this point and establish that, in any refined Nash pooling equilibrium, b(qL1 ) = 0 for any qL1 > qN1 .
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Lemmas 1 and 2. Thus, given qL1 6= qN1 and for b > 0, if b ∈ DR(qL1 ) ∪ DR
0 (qL1 ), then

b ∈ DF (qL1 ). Hence, if a belief b > 0 is such that the resolute Firm 1 weakly gains from
the deviation to qL1 , then the flexible Firm 1 is sure to gain from this deviation.
Fourth, it is interesting to contrast the result here with a common finding for signaling

games that refinements direct attention to the least-cost separating equilibrium.32 In the
model analyzed here, starting at the Nash pooling equilibrium, the flexible Firm 1 gains
from a deviation under a wider range of beliefs than does the resolute Firm 1. The resolute
Firm 1 is thus unable starting at qL1 (R) = qL1 (F ) = qN1 to invoke a single-crossing property
and reveal itself under the refinement through a deviation.33 The model considered here
is also distinct from the standard signaling model in that the belief that the sender prefers
to elicit varies with the level of the signal; specifically, both types of Firm 1 prefer to be
perceived as a resolute type when qL1 > qN1 and are indifferent about Firm 2’s belief when
qL1 = qN1 .

34 We develop these distinctions in more detail in Section 5.6.

5.3 Are any other pooling equilibrium outcomes refined?

We now turn to our second question and consider the existence of other refined pooling
equilibrium outcomes. We know that other pooling equilibria may exist. For example,
as Proposition 4 reveals, under additional assumptions, there exists a pooling equilibrium
at the generalized Stackelberg leader output: qL1 (R) = qL1 (F ) = qgs1 (r) with b(qgs1 (r)) = r

and b(qL1 ) = 0 for all qL1 6= qgs1 (r). The question we now ask is whether any pooling
equilibrium in which qL1 (R) = qL1 (F ) 6= qN1 can be a refined equilibrium. We establish
here that the answer is negative; in other words, the Nash pooling equilibrium outcome
is the only refined pooling equilibrium outcome.
To begin, we assume the existence of a pooling equilibrium in which qL1 (R) = qL1 (F ) 6=

qN1 . Next, we recall from Proposition 6 that qL1 (R) ≥ qN1 . Thus, we may assume the
existence of a pooling equilibrium in which qL1 (R) = qL1 (F ) > qN1 . By Lemmas 1 and 2,
we thus have that the pooling leader quantity qL1 (R) satisfies qL1 (R) > q∗1(q

L
1 (R), b) > qN1

32See Cho and Sobel (1990) for a general statement of suffi cient conditions under which the D1 refine-
ment for signaling games selects the least-cost separating equilibrium.
33When qL1 (R) = qL1 (F ) = qN1 , the flexible Firm 1 is indifferent about revealing itself through a

deviation. It is significant that we consider here deviations from the Nash pooling equilibrium. In Section
5.3, we consider pooling equilibria in which qL1 (R) = qL1 (F ) > qN1 and show that the resolute Firm 1 can
then invoke a single-crossing property and reveal itself under the refinement through a deviation.
34Both types of Firm 1 prefer to be perceived as a flexible type when qL1 < qN1 , but as shown in

Proposition 6 the resolute Firm 1 would never choose such a leader quantity in equilibrium. Bernheim
and Sererinov (2003) consider a signaling model in which the sender’s preferred belief varies with its type.
The model considered here is different in that both types of the sender (i.e., Firm 1) agree on the ranking
of different beliefs but the ranking itself depends on the magnitude of the signal (i.e., the sign of qL1 −qN1 ).

28



for any b > 0. We may now use (11) and (12) to conclude that, for all b ∈ (0, 1),

0 >
∂q∗2(q

L
1 (R), b)

∂qL1
and 0 >

∂q∗2(q
L
1 (R), b)

∂b
, (24)

where the relationships in this and the preceding sentence hold in particular when b = r.

Let us now consider a small deviation from qL1 (R); specifically, consider the deviant
leader quantity qL1 = qL1 (R) − ε, where ε > 0 is a small number, ensuring that qL1 > qN1
and thus that qL1 > q∗1(q

L
1 , b) > qN1 for any b > 0 and that (24) continues to hold for all

b ∈ (0, 1) when qL1 (R) is replaced by qL1 . Suppose that we define a corresponding belief
value b′ such that

q∗2(q
L
1 , b
′) = q∗2(q

L
1 (R), r), (25)

where b′ ∈ (0, 1) is thus close to r and satisfies b′ > r by (24) when evaluated at b = r.

Observe first that, with the period-2 equilibrium quantity of Firm 2 fixed by (25),
the flexible Firm 1 is indifferent about deviating to qL1 when the belief b

′ is elicited:
∆F (qL1 , b

′) = 0. This observation reflects the fact that the final output for the flexible
Firm 1 is unconstrained by the leader quantity selected by this firm. We conclude that

b′ ∈ DF
0 (qL1 ). (26)

As we establish just below, however, the resolute Firm 1 gains from deviating to qL1 when
the belief b′ is elicited: ∆R(qL1 , b

′) > 0. We thus have that

b′ ∈ DR(qL1 ). (27)

To understand why the resolute Firm 1 gains from deviating to qL1 when the belief b
′

is elicited, observe that, at the fixed period-2 equilibrium quantity for Firm 2 given by
(25), the leader quantity qL1 (R) is above Firm 1’s best-response value:

qL1 (R) > q∗1(q
L
1 (R), r) = qbr1 (q∗2(q

L
1 (R), r)) = qbr1 (q∗2(q

L
1 , b
′)).

Thus, the resolute Firm 1’s profit rises with the deviation, since the deviation doesn’t alter
Firm 2’s period-2 equilibrium quantity and yet enables the resolute Firm 1 to position its
final output closer to its best-response value. Hence, the defining feature of the Stackelberg
solution, namely, that the leader select an action that is not a best response, explains why
the resolute Firm 1 gains from this deviation. We conclude that (27) indeed holds.
Holding the deviant leader quantity qL1 fixed, we now characterize the set of beliefs b
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such that b ∈ DF (qL1 ) ∪DF
0 (qL1 ). To this end, we observe that, for b ∈ (0, 1),

d∆F (qL1 , b)

db
=

∂π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))

∂q1
· ∂q

∗
1(q

L
1 , b)

∂b
(28)

+
∂π1(q

∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))

∂q2
· ∂q

∗
2(q

L
1 , b)

∂b

=
∂π1(q

∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))

∂q2
· ∂q

∗
2(q

L
1 , b)

∂b
> 0,

where the first equality follows directly from (19), the second equality follows from the
envelope theorem as captured here in (7), and the inequality follows from (15), qL1 =

qL1 (R)− ε and (24). Given ∆F (qL1 , b
′) = 0, we may now conclude from (28) that

DF (qL1 ) ∪DF
0 (qL1 ) = {b|b ≥ b′}. (29)

The key intuition is straightforward. Since by construction the flexible Firm 1 is indifferent
to deviating to qL1 when the belief b

′ is elicited that holds fixed Firm 2’s period-2 equi-
librium quantity, the flexible Firm 1 gains from deviating to qL1 if and only if the elicited
belief b induces a reduction in Firm 2’s period-2 equilibrium quantity. Accordingly, the
flexible Firm 1 weakly gains from deviation to qL1 if and only if b ≥ b′.
Let us next consider whether DF (qL1 ) ∪ DF

0 (qL1 ) v DR(qL1 ). Recall from (27) that
b′ ∈ DR(qL1 ). To consider b > b′, we use (19) and find that, for any b ∈ (0, 1),

d∆R(qL1 , b)

db
=
∂π1(q

L
1 , q

∗
2(q

L
1 , b))

∂q2
· ∂q

∗
2(q

L
1 , b)

∂b
> 0, (30)

where the inequality follows from (15), qL1 = qL1 (R) − ε and (24). Given ∆R(qL1 , b
′) > 0,

we may now conclude from (30) that

{b|b ≥ b′} ⊂ DR(qL1 ), (31)

where the inclusion is strict since by continuity b′ − η ∈ DR(qL1 ) for η > 0 suffi ciently
small. Referring to (29) and (31), we conclude that

DF (qL1 ) ∪DF
0 (qL1 ) ⊂ DR(qL1 ). (32)

With (27) and (32) in hand, we now consider the implications of our analysis for
refined beliefs. According to (22), our refinement requires that Firm 2 believes that the
deviation to qL1 is undertaken by the resolute Firm 1: b(qL1 ) = 1. Notice that this belief
function is different than the punishing beliefs we used to support the pooling equilibrium
in which qL1 (R) = qL1 (F ) = qgs1 (r), as in that case we specified that Firm 2 believes
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that any deviation is undertaken by the flexible Firm 1. The key issue is now whether
a pooling equilibrium other than the Nash pooling equilibrium can be enforced when
qL1 = qL1 (R)− ε generates the belief that the deviation is undertaken by the resolute Firm
1, b(qL1 ) = 1. But we already know from (31) that 1 ∈ DR(qL1 ). Equivalently, we know
that ∆R(qL1 , 1) = π1(q

L
1 , q

∗
2(q

L
1 , 1)) − Π1(R) > 0, which is to say that the resolute Firm 1

would gain from a deviation to qL1 if the belief b(q
L
1 ) = 1 were elicited. Intuitively, the

resolute Firm 1 gains in this case, since it is then able to position its final output closer to
its best-response value and induce a reduction in Firm 2’s period-2 equilibrium quantity.
We conclude that the putative pooling equilibrium fails to be refined.
We summarize our argument with the following proposition:

Proposition 8 The Nash pooling equilibrium outcome is the unique refined pooling equi-
librium outcome.

Since any separating equilibrium leads to the same final outputs as does the Nash pooling
equilibrium, we have as well the following corollary:

Corollary 2 Refined equilibria exist, and in any refined equilibrium the final outputs are
the Nash outputs, (qN1 , q

N
2 ), with each firm thus earning its Nash profits, Π1(R) = Π1(F ) =

πN1 and π
N
2 .

We now make four additional points. First, our uniqueness results utilize additional
structure in comparison to our finding in Proposition 7 that the Nash pooling equilibrium
is refined. In particular, we use (15) in the proof of Proposition 8. Motivated in part by
this observation, we consider in the next section a general-payoff structure and thereby
identify the driving forces behind our results.
Second, the results above indicate that, starting at a pooling equilibrium in which

qL1 (R) = qL1 (F ) > qN1 , a single-crossing property holds for the model in that a reduction
in the leader quantity and increase in the belief that together leave the flexible Firm 1
indifferent must generate a gain for the resolute Firm 1. By contrast, and in line with
the discussion above, when we start at the Nash pooling equilibrium where qL1 (R) =

qL1 (F ) = qN1 , this single-crossing property fails to hold. Indeed, starting at the Nash
pooling equilibrium, the flexible Firm 1 is indifferent to a deviant leader quantity if and
only if the deviation leads to the belief b = 0, but the resolute Firm 1 loses from a
deviation when the belief b = 0 is induced.
Third, the refinement requires only that the resolute Firm 1 gains whenever a flexible

Firm 1 weakly gains. A different consideration might be to see which type of Firm 1
gains more from deviating. While this goes beyond the refinement that we employ, it is
interesting to observe that under our assumptions the resolute Firm 1 also gains more
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from deviating to qL1 for any b ≥ b′. Formally, as confirmed in Appendix A, for b ∈ (0, 1)

and given qL1 = qL1 (R)− ε > qN1 , we have that

d∆R(qL1 , b)

db
− d∆F (qL1 , b)

db
> 0. (33)

As shown in Figure 2, it follows for any b ≥ b′ that the resolute Firm 1 gains more from
deviating to qL1 than does the flexible Firm 1. This perhaps provides some additional
intuitive support for the specification that b(qL1 ) = 1, which in turns ensures that no
pooling equilibrium outcome other than the Nash pooling equilibrium outcome is refined.
Fourth, we note that the refinement is in any case stronger than necessary to eliminate

pooling equilibria with qL1 (R) = qL1 (F ) > qN1 . We establish this point in two ways. First,
we maintain focus on the “local”deviation to qL1 = qL1 (R) − ε and argue that the belief
restriction that b(qL1 ) = 1 goes well beyond what is necessary to induce the resolute
Firm 1 to deviate to qL1 . Second, we briefly expand our discussion to consider beliefs at
“non-local” deviations, and we argue that the single-crossing property described above
ensures that all pooling equilibria with qL1 (R) = qL1 (F ) > qN1 are eliminated under a belief
restriction motivated by the intuitive criterion of Cho and Kreps (1987).35

We begin by considering alternative belief restrictions given the local deviation, qL1 =

qL1 (R)− ε. As can be inferred from Figure 2, there exists some b′′ ∈ (0, b′) such that the
resolute Firm 1 is sure to undertake the deviation to qL1 if b(q

L
1 ) > b′′.36 It is thus interesting

to consider whether other refinements might be suffi cient to ensure that b(qL1 ) > b′′. The
intuitive criterion does not deliver this belief restriction. Starting at a pooling equilibrium
with qL1 (R) = qL1 (F ) > qN1 , both types of Firm 1 would gain from a slight downward
deviation to qL1 if Firm 2 were to have the belief b(qL1 ) = 1 and thus reduce its period-2
equilibrium quantity. Hence, the deviant leader quantity qL1 is not equilibrium dominated
in the reduced-form game for either type of Firm 1. Motivated by the divinity refinement
of Banks and Sobel (1987) for signaling games, we might also consider a refinement under
which b(qL1 ) ≥ r whenever such a deviation qL1 from a pooling equilibrium is observed
and (32) is satisfied. This refinement is suffi cient to eliminate pooling equilibria at leader
quantities that exceed the generalized-Stackelberg quantity, qgs1 (r), since the resolute Firm
1 then gains from a slight downward deviation to qL1 even if b(q

L
1 ) = r.

What would a divinity-based refinement imply if we were to start at a pooling equi-
librium with a leader quantity that lies at or below the generalized-Stackelberg quantity
so that qL1 (R) = qL1 (F ) ∈ (qN1 , q

gs
1 (r)]? Interestingly, for this case, the divinity-based

refinement is not quite suffi cient to ensure a deviation by the resolute Firm 1. For the

35We give primary focus to the D1-based refinement since the associated local deviations are easily
explained and would be utilized in extended models with richer type spaces. Section 7 offers one example.
36For the given qL1 = qL1 (R)− ε, b′′ is defined by ∆R(qL1 , b) = 0. Given qL1 > qN1 , we can show that the

pooling equilibrium exists only if ∆R(qL1 , 0) < 0. It follows that b′′ > 0.
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deviation qL1 = qL1 (R) − ε with ε > 0 and small, the key point is that in this case b′′

satisfies b′′ ∈ (r, b′), and so a belief b(qL1 ) such that b(qL1 ) ∈ [r, b′′] would satisfy the
divinty-based refinement without inducing a deviation. Figure 3 illustrates the subcase
in which qL1 (R) = qL1 (F ) ∈ (qN1 , q

gs
1 (r)). The indifference curve for the resolute Firm 1 is

then negatively sloped through the point (qL1 (R), r) that corresponds to the equilibrium
leader action and associated belief, and b′′ ∈ (r, b′) thus clearly follows.37

At the same time, given that the deviation qL1 = qL1 = qL1 (R)− ε satisfies (32), a belief
function of this kind might be challenged as giving insuffi cient attention to the resolute
Firm 1’s greater potential to gain from the deviation. Consider the following alternative.
Given a pooling equilibrium qL1 (R) = qL1 (F ) > qN1 , suppose we require that there exists
φ > 0 such that, for any deviation qL1 satisfying (32), b(q

L
1 ) ≥ r + φ.38 The simple idea

here is that, if a deviation from a pooling equilibrium is observed that generates a gain
for the resolute Firm 1 whenever it generates a weak gain for the flexible Firm 1, then
we might reasonably require that the belief function rise above the prior by a certain
amount φ when the deviation is observed, where φ > 0 is defined independently of the
specific deviation but can be arbitrarily small. A pooling equilibrium would then fail
to satisfy this “milder restriction” if, for all φ > 0, the resolute or flexible Firm 1 can
find a deviation under which it enjoys a gain from deviation. We can easily see from
Figure 3 for the subcase qL1 (R) = qL1 (F ) ∈ (qN1 , q

gs
1 (r)) that, given any φ > 0, there will

always exist an ε > 0 suffi ciently small that the resolute Firm 1 gains from deviating
to qL1 = qL1 (R) − ε and obtaining the belief b(qL1 ) ≥ r + φ. A pooling equilibrium at
qL1 (R) = qL1 (F ) = qgs1 (r) > qN1 would fail by a similar argument, and as noted above a
pooling equilibrium with qL1 (R) = qL1 (F ) > qgs1 (r) would fail even if φ = 0. Thus, the
milder restriction suffi ces to eliminate all pooling equilibria with qL1 (R) = qL1 (F ) > qN1 .

39

We next examine non-local deviations and consider the implications of a belief re-
striction motivated by the intuitive criterion. To this end, we fix a pooling equilibrium
with qL1 (R) = qL1 (F ) > qN1 and define q̃L1 < qL1 (R) as the leader quantity that satisfies

37The subcase in which qL1 (R) = qL1 (F ) = qgs1 (r) is similar, except that the slope of the indifference
curve for the resolute Firm 1 then has a slope of zero at the point (qL1 (R), r) and takes a negative (positive)
slope for leader quantities just below (above) qL1 (R). We can also refer to Figure 3 to interpret the finding
reported in the previous paragraph for the situation in which qL1 (R) = qL1 (F ) > qgs1 (r). The indifference
curve for the resolute Firm 1 would then take a positive slope through the point (qL1 (R), r), and as noted
in the previous paragraph the resolute Firm 1 would then deviate to qL1 = qL1 (R)− ε even if b(qL1 ) = r.
38Notice that (32) holds with strict inclusion, and so for simplicity we define the restriction described

here in a similar way. Notice also that we allow that φ may take different values depending on the pooling
equilibrium under consideration. Alternatively, we could have defined a value for φ that applies uniformly
for any pooling equilibrium or for any pooling equilibrium associated with a given pooling equilibirum
outcome. The point made here holds under any of these formalizations.
39We can also eliminate all pooling equilibria with qL1 (R) = qL1 (F ) > qN1 under alternative mild re-

strictions; in particular, it is not necessary that the belief function is discontinuous. A similar argument
holds if the belief function is continuous and rises from r in Figure 3 at a slope that exceeds the slope of
the resolute Firm 1’s indifference curve.
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q∗2(q
L
1 (R), r) = q∗2(q̃

L
1 , 1). As (10) indicates, q∗2(q̃

L
1 , 1) = qbr2 (q̃L1 ); thus, q̃L1 is simply the

quantity for Firm 1 to which q∗2(q
L
1 (R), r) is a best response. With q∗2(q

L
1 (R), r) < qN2

ensured by Lemma 1, it follows that q̃L1 ∈ (qN1 , q
L
1 (R)).

Consider now a deviation to the leader quantity q̃L1 − ε where ε > 0 is small so that
q̃L1 −ε > qN1 . Recalling that the flexible Firm 1 is indifferent to a deviation that leaves Firm
2’s period-2 equilibrium quantity unaltered, we have that ∆F (q̃L1 , 1) = 0. From here, it is
a simple matter to utilize preceding arguments and conclude that the deviation q̃L1 − ε is
equilibrium dominated in the reduced-form game for the flexible Firm 1: ∆F (q̃L1 −ε, b) < 0

for all b ∈ [0, 1]. By contrast, for the resolute Firm 1, the deviant leader quantity q̃L1 is
not equilibrium dominated in the reduced-form game since ∆R(q̃L1 , 1) > 0. In line with
preceding arguments, the key point is that the deviation to q̃L1 in combination with the
belief b(q̃L1 ) = 1 doesn’t alter Firm 2’s period-2 equilibrium quantity and yet enables the
resolute Firm 1 to position its final output closer to its best-response value. By continuity,
for suffi ciently small ε > 0, the deviant leader quantity q̃L1 − ε is likewise not equilibrium
dominated for the resolute Firm 1. Motivated by the intuitive criterion, we may thus
impose b(q̃L1 − ε) = 1, which induces the resolute Firm 1 to undertake the deviation.
Hence, by considering non-local deviations, we can also use a belief restriction motivated
by the intuitive criterion to eliminate pooling equilibria with qL1 (R) = qL1 (F ) > qN1 .

5.4 The set of refined equilibria

We now further characterize the set of refined equilibria as formally defined in Section 5.1.
As shown in Proposition 8 and Corollary 2, in any refined equilibrium, the final outputs
and profits are uniquely determined as Nash outputs and profits. For completeness, we
address two remaining issues. First, does the refinement also require that the punishing
belief specification be used to support the Nash pooling equilibrium outcome? Second,
are separating equilibria also refined, and to what extent does the refinement require that
separating equilibria employ the punishing belief specification?
We start with the first issue. Can the Nash pooling equilibrium outcome be supported

by a refined equilibrium that specifies a belief function that differs from the punishing
belief function? Building on arguments made above, we show in Appendix A that for
any pooling equilibrium in which qL1 (R) = qL1 (F ) = qN1 , the equilibrium is refined only
if b(qL1 ) = 0 for any qL1 > qN1 . Thus, a Nash pooling equilibrium is refined only if the
punishing belief specification is used for qL1 > qN1 . The refinement has no bite, however,
for deviations from the Nash pooling equilibrium quantity to qL1 < qN1 . The reason is that
neither type of Firm 1 can gain from such a deviation. We thus conclude as follows:

Proposition 9 In any refined Nash pooling equilibrium, b(qL1 ) = 0 for any qL1 > qN1 .
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We consider next separating equilibria. By Proposition 5, qL1 (R) = qN1 and Π1(R) =

Π1(F ) = πN1 in any separating equilibrium. Consider any value q
L
1 (F ) such that qL1 (F ) 6=

qN1 . Since the equilibrium profit for both types of Firm 1 is the same as in any pooling
equilibrium with qL1 (R) = qL1 (F ) = qN1 , we can draw directly on our findings above and
conclude that the separating equilibrium is refined if punishing beliefs are used, so that
b(qL1 ) = 0 for all qL1 /∈ {qL1 (R) = qN1 , q

L
1 (F )}. We can also draw on the proof of Proposition

9 and conclude that a separating equilibrium is refined only if b(qL1 ) = 0 for any qL1 > qN1
and such that qL1 6= qL1 (F ). Once again, the refinement imposes no conditions on the belief
function for any qL1 < qN1 and such that q

L
1 6= qL1 (F ). We thus have the following result:

Proposition 10 Refined separating equilibria exist; and in any refined separating equi-
librium, b(qL1 ) = 0 for any qL1 > qN1 such that q

L
1 6= qL1 (F ).

Summarizing, the set of refined equilibria is characterized by pooling equilibria in
which qL1 (R) = qL1 (F ) = qN1 with b(q

L
1 ) = 0 for any qL1 > qN1 and by separating equilibrium

with qL1 (R) = qN1 and b(qL1 ) = 0 for any qL1 > qN1 such that qL1 6= qL1 (F ). The refinement
leaves some wiggle room for cosmetic differences associated with beliefs for deviations
for which no type of Firm 1 would gain and the flexible Firm 1’s leader quantity under
separation. But at a substantive level the refinement pins down the relevant economic
activity: for any refined equilibrium, the final quantities are the Nash outputs, (qN1 , q

N
2 ),

with each firm thus earning its Nash profits, Π1(R) = Π1(F ) = πN1 and π
N
2 .

5.5 Mixed-strategy equilibria

We focus on refined pure-strategy equilibria. It is natural to wonder whether the results
would change in some significant way were refined mixed-strategy equilibria considered.
In the Supplementary Appendix, we extend the analysis to characterize mixed-strategy

sequential equilibria for the game with private resolve as defined in Section 3.2. We
restrict attention to mixed strategies in which the distribution over actions is discrete
and has finite support.40 A mixed strategy for a player thus indicates the probability
that the player will select a given action in the support of the mixed strategy. Given the
concavity of the profit functions as captured in (1), the flexible Firm 1 and Firm 2 do not
randomize in equilibrium with respect to their period-2 quantity choices; therefore, any
randomization must concern the selection of Firm 1’s leader quantities. Thus, we may
again embed the period-2 equilibrium quantities into the payoff functions and analyze the
(refined) equilibria of the reduced-form game. The definitions of equilibria and refined
equilibria extend in straightforward fashion when mixed strategies are included.

40Cho and Kreps (1987) adopt a similar approach for their analysis of the Spence signaling model.
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As shown in the Supplementary Appendix, in any refined mixed-strategy equilibrium,
the resolute Firm 1 adopts a pure strategy and sets its leader quantity equal to its Nash
output, qN1 , with probability one.

41 In refined mixed-strategy equilibria, the flexible Firm
1 either separates with probability one with randomly determined leader quantities that
differ from qN1 , or pools with the resolute Firm 1 at q

N
1 with some positive probability and

separates with complementary probability with randomly determined leader quantities
that differ from qN1 . In any case, and whether Firm 1 is resolute or flexible, Firm 2
expects that Firm 1’s final output is qN1 and thus best responds with a final output of q

N
2 ,

ensuring that both types of Firm 1 earn πN1 while Firm 2 earns π
N
2 . Our main findings as

summarized in Corollary 2 thus continue to hold when mixed strategies are allowed.

5.6 Comparison with standard signaling games

In a standard Spence-style signaling model with two types, the application of refinements
leads to the least-cost separating equilibrium outcome.42 Such models often feature two
assumptions. First, for any fixed value of the signal, each type of sender gains when the
receiver increases the belief probability that is associated with a high type of sender. This
gain derives from the induced change in the receiver’s response action. Second, a global
single-crossing property holds and ensures that the high type of sender is more willing to
send higher signals than is the low type. Our analysis of refined equilibria for the reduced-
form game, by contrast, directs attention to the Nash pooling equilibrium outcome. The
different results suggest that the payoff functions for the reduced-form game must differ
in some systematic ways from those considered in standard signaling models.
Figure 4 provides a convenient illustration with which to identify some key distinctions.

Consider first the preferences that Firm 1 holds with respect to Firm 2’s beliefs. As
illustrated in Figure 4, for a given leader quantity, both types of Firm 1 agree as to whether
they prefer higher beliefs to lower beliefs; however, a feature of the model considered here
is that their preferences regarding beliefs depend on the level of the leader quantity (i.e.,

41The argument proceeds via several observations, One is that Firm 2’s period-2 equilibrium quantity
must be constant following any leader quantity that the flexible Firm 1 selects with positive probability in
a mixed-strategy equilibrium. A key next step is to consider various cases and show that the flexible Firm
1 earns its Nash profit, πN1 , in any refined mixed-strategy equilibrium. For example, to rule out a refined
equilibrium in which the flexible Firm 1 selects more than one leader action with positive probability and
earns an equilibrium profit above πN1 , we argue that it would then be necessary that the resolute Firm 1
also selects these leader quantities with positive probability. But given the strict concavity of the resolute
Firm 1’s profit and that the period-2 equilibrium output of Firm 2 is constant for these leader quantities,
there can be at most two leader quantities that the flexible Firm 1 selects with positive probability,
where the higher of the two is above the best-response value. From here, it is straightforward to use
the refinement as above. With the flexible Firm 1’s payoff equal to πN1 in any refined mixed-strategy
equilibrium, it is not diffi cult to show that the resolute Firm 1 must set its leader output at qN1 .
42See Cho and Sobel (1990) for general characterizations of refined equilibria in signaling games.
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on the value of the “signal”). We have the following taxonomy: when qL1 > qN1 , both types
of Firm 1 prefer that Firm 2 has a higher belief b; when qL1 < qN1 , both types of Firm
1 prefer that Firm 2 has a lower belief b; and when qL1 = qN1 , both types of Firm 1 are
indifferent about Firm 2’s belief b.
As Figure 4 illustrates, the nature of the single-crossing property also varies as different

values for the leader quantity are considered. With respect to this property, if we start
at a point (qL1 , b) with b > 0, the taxonomy is as follows: when qL1 > qN1 , the indifference
curve for the flexible Firm 1 is steeper, ensuring that the resolute Firm 1 can benefit from
a slight reduction in the leader quantity under a wider set of beliefs than can the flexible
Firm 1; when qL1 < qN1 , the indifference curve for the resolute Firm 1 is steeper, ensuring
that the resolute Firm 1 can benefit from a slight increase in the leader quantity under
a wider set of beliefs than can the flexible Firm 1; and when qL1 = qN1 , the resolute Firm
1 is unable to find any alternative leader quantity and associated belief under which it
gains while the flexible Firm 1 is indifferent or loses.43

Figure 4 illustrates other features as well. For example, one key feature is that the
flexible Firm 1 is indifferent over different values of qL1 when b = 0. The generalized
Stackelberg solution, qgs1 (b), is also illustrated in Figure 4. In line with the analysis
above, this function is depicted as exceeding the Nash output, qN1 , when b > 0. For
simplicity, this function is further represented as being an increasing function.44 Finally,
we notice as well that the indifference curves for both types of Firm 1 become steeper
as qL1 moves toward q

N
1 , since changes in beliefs lead to smaller adjustments in Firm 2’s

second-period equilibrium quantity when the difference between the leader quantity and
the Nash quantity diminishes.
The takeaway from Figure 4 is that the payoff functions considered here are signifi-

cantly different from those adopted in standard signaling models. It is thus perhaps not
surprising that our analysis directs attention to a different form of refined equilibrium
play. Motivated by this discussion, we proceed in the next section to examine general
properties of payoff functions that are suffi cient for the findings reported above.

6 General payoffs and applications

In this section, we represent Firm 1’s reduced-form payoffs as general functions of qL1
and b, with the goal of identifying conditions for general payoff functions that suffi ce for
our findings. This generalization clarifies the driving forces in the analysis and facilitates

43The indifference curve for the resolute Firm 1 is steeper when when qL1 < qN1 , since an increase in q
L
1

and b that maintains Firm 2’s second-period equilibrium quantity (and that thus holds fixed the payoff
of the flexible Firm 1) enables the resolute Firm 1 to enjoy the additional benefit of moving its leader
quantity closer to its best-response quantity.
44As confirmed in Section 6.2.1, this function is increasing when demand and cost functions are linear.
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applications. To anchor the discussion, we interpret our assumptions at various points
with reference to the quantity-game setting explored above. We organize the analysis
around two cases: the “Stackelberg-up”case in which as in the quantity-game setting the
generalized Stackelberg action exceeds the Nash action, and the “Stackelberg-down”case
in which the Nash action exceeds the generalized Stackelberg action. After establishing
general results for both cases, we illustrate the results with specific applications.

6.1 General payoffs and suffi cient conditions

We now let πR(qL1 , b) and π
F (qL1 , b) denote general payoff functions for the resolute and

flexible Firm 1’s, respectively, when the leader choice qL1 is made and the belief b =

b(qL1 ) is induced. For example, in the quantity-game setting explored above, πR(qL1 , b) =

π1(q
L
1 , q

∗
2(q

L
1 , b)) and π

F (qL1 , b) = π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b)); thus, for that setting, the general

payoff functions suppress the different channels through which qL1 and b affect profits.
In order to include this strategic setting and others, our approach in this section is to
impose general assumptions directly on the reduced-form payoff functions πR(qL1 , b) and
πF (qL1 , b). We refer to this environment as the general-payoff setting.

45

To begin, we assume that the choice set for Firm 1 is defined by Q1 ≡ [0, q1) where
q1 > 0, and we assume that πR(qL1 , b) and π

F (qL1 , b) are twice-continuously differentiable
overQ1×[0, 1]. To this, we add this following baseline assumptions on the payofffunctions:

Definition 4 For the general-payoff setting, our baseline assumptions are:

1. For all qL1 ∈ Q1, πR(qL1 , 0) is strictly concave in qL1 with a unique maximizer q
N
1 ∈ (0, q1)

which delivers the profit level πN1 ≡ πR(qN1 , 0).

2. For all b ∈ [0, 1], πF (qN1 , b) = πR(qN1 , b) = πN1 .

3. For all b ∈ [0, 1], and for all qL1 ∈ Q1 such that qL1 6= qN1 , π
F (qL1 , b) > πR(qL1 , b).

4. For all qL1 ∈ Q1, πF (qL1 , 0) = πN1 .

While these assumptions may appear abstract, they are easily interpreted in the quantity-
game setting considered above. To fix ideas in the general-payoff setting, we draw on
our preceding analysis of the quantity-game setting and briefly interpret the baseline
assumptions in that context.
For the quantity-game setting, the first baseline assumption simply defines the Nash

output for Firm 1, with b = 0 ensuring that Firm 1’s leader quantity has no impact on
Firm 2’s behavior. In line with Lemma 3, the second baseline assumption indicates that,

45To facilitate comparison between the analysis of the general-payoff setting and the previous analysis
of the quantity-game setting, we ensure that any notation used in common across the two settings can
be understood as an extension from the quantity-game setting to the general-payoff setting.
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regardless of beliefs or Firm 1’s type, the Nash profit is delivered if the leader quantity is
set at the Nash output. The third baseline assumption highlights the advantage of being
flexible: provided that the leader quantity differs from the Nash output, the leader output
is not a best-response to Firm 2’s output, ensuring that the flexible Firm 1 does better.
The fourth baseline assumption indicates that the leader quantity selection for a flexible
Firm 1 is irrelevant when Firm 2 believes that it is facing a flexible Firm 1, since then the
leader quantity is irrelevant to both firms.
For the general-payoff setting, the reduced-form game can be described as follows.

Nature selects whether Firm 1 has resolve or is flexible, where Nature selects “resolve”
with probability r ∈ (0, 1) and where Nature privately informs Firm 1 of its choice. After
learning its type, Firm 1 then selects a leader action, qL1 . Firm 2 observes qL1 and forms
a belief b = b(qL1 ) as to the likelihood that Firm 1 has resolve. Firm 1’s payoffs are then
determined as πR(qL1 , b) and π

F (qL1 , b). For a given application, any subsequent actions
that Firms 1 and 2 may take are embedded into the payoff functions.
An equilibrium for the reduced-form game in the general-payoff setting is exactly

analogous to that presented previously for the quantity-game setting.

Definition 5 For the general-payoff setting, an equilibrium is a triplet {qL1 (R), qL1 (F ), b(qL1 )}
such that

qL1 (R) ∈ arg max
qL1

πR1 (qL1 , b(q
L
1 ))

qL1 (F ) ∈ arg max
qL1

πF1 (qL1 , b(q
L
1 ))

If qL1 (R) = qL1 (F ), then b(qL1 (R)) = r

If qL1 (R) 6= qL1 (F ), then b(qL1 (R)) = 1 > 0 = b(qL1 (F ))

The definitions of a pooling equilibrium and a separating equilibrium are unchanged;
likewise, we continue to define a Nash pooling equilibrium, the Nash pooling equilibrium
outcome, and an r-robust pooling equilibrium outcome exactly as above.
To relate our findings for the general-payoffsetting to the propositions presented above,

we note that the equilibrium payoffs for the general-payoff setting, πR(qL1 (R), b(qL1 (R)))

and πF (qL1 (F ), b(qL1 (F ))), can be understood as an extension of the notation used previ-
ously in (13) as follows:

πR(qL1 (R), b(qL1 (R))) ≡ Π1(R) = π1(q
L
1 (R), q∗2(q

L
1 (R), b(qL1 (R))) (34)

πF (qL1 (F ), b(qL1 (F ))) ≡ Π1(F ) = π1(q
L
1 (F ), q∗2(q

L
1 (F ), b(qL1 (F )))

Using this notational extension, we can speak of whether a proposition that characterizes
equilibrium payoffs for the quantity-game setting also holds in the general-payoff setting.
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Our definition of a refined equilibrium extends directly to the general-payoff setting if
we define

∆R(qL1 , b) ≡ πR(qL1 , b)− Π1(R) (35)

∆F (qL1 , b) ≡ πF (qL1 , b)− Π1(F ),

where the definitions of Π1(R) and Π1(F ) are already extended to the general-payoff
setting in (34).
In Appendix B, we establish our first result for the general-payoff setting.

Proposition 11 For the general-payoff setting and under the baseline assumptions, Corol-
lary 1 and Propositions 1, 2, 3 and 7 all hold.

Thus, in equilibrium, Firm 1 earns at least its Nash profit, πN1 , regardless of its type; and
in a pooling equilibrium, the flexible Firm 1 makes more than (the same as) the resolute
Firm 1 if qL1 6= qN1 (qL1 = qN1 ). Further, the baseline assumptions alone are suffi cient to
ensure the existence of the Nash pooling equilibrium, that the Nash pooling equilibrium
outcome is the unique pooling equilibrium outcome that is r-robust, and that the Nash
pooling equilibrium is a refined equilibrium.
To construct other equilibria and analyze separating equilibria, we utilize some addi-

tional structure. At this point, it is useful to distinguish between two general strategic en-
vironments. In the “Stackelberg-up”case, Firm 1’s generalized Stackelberg choice exceeds
its Nash choice, provided that b > 0. The quantity-game setting fits into this category.
The second general strategic environment is then the “Stackelberg-down”case, in which
Firm 1’s generalized Stackelberg choice lies below its Nash choice, again provided that
b > 0. We define additional assumptions for both cases, and within each set of additional
assumptions we again define the generalized Stackelberg quantity with the notation qgs1 (b)

for any b ∈ [0, 1] where we now explicitly extend the domain to include the limiting cases
where b ∈ {0, 1}.
We first define the additional assumptions that we impose on the general payoff func-

tions for the Stackelberg-up case.

Definition 6 For the general-payoff setting in the Stackelberg-up case, our additional
assumptions are:

1. For all qL1 ∈ Q1 and b ∈ (0, 1], πF (qL1 , b) is increasing in q
L
1 .

2. For all qL1 ∈ (qN1 , q1) and b ∈ [0, 1], πF (qL1 , b) and π
R(qL1 , b) are increasing in b.

3. For all qL1 ∈ Q1 and b ∈ (0, 1], πR(qL1 , b) is strictly concave in q
L
1 and maximized at

qgs1 (b) ∈ (qN1 , q1).
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These additional assumptions are also readily interpreted in terms of the quantity-
game setting considered above. The first additional assumption captures the idea that
the flexible Firm 1 gains from a higher leader output when b > 0, since Firm 2 then
reduces its output.46 The second additional assumption captures a related idea: provided
that qL1 > qN1 , a higher value for b increases the weight that Firm 2 attaches to the
possibility that Firm will follow through and produce qL1 , and so both the flexible and
resolute Firm 1’s gain from the resulting decrease in Firm 2’s output. Finally, the third
additional assumption defines the Stackelberg-up case and ensures that the generalized
Stackelberg leader output is well defined.
We next define the additional assumptions that we impose on the general payoff func-

tions for the Stackelberg-down case.

Definition 7 For the general-payoff setting in the Stackelberg-down case, our additional
assumptions are:

1. For all qL1 ∈ Q1 and b ∈ (0, 1], πF (qL1 , b) is decreasing in q
L
1 .

2. For all qL1 ∈ [0, qN1 ) and b ∈ [0, 1], πF (qL1 , b) and π
R(qL1 , b) are increasing in b.

3. For all qL1 ∈ Q1 and b ∈ (0, 1], πR(qL1 , b) is strictly concave in q
L
1 and maximized at

qgs1 (b) ∈ [0, qN1 ).

The additional assumptions for the Stackelberg-down case are similar to those for the
Stackelberg-up case, except that now Firm 1 gains when believed to have selected a lower
leader action. In this case, Firm 1 thus gains from an increase in b when the leader
action is positioned below the Nash action. The third additional assumption defines the
Stackelbeg-down case and ensures that the Stackelberg-down leader action is well defined.
In Appendix B, we confirm the following result:

Proposition 12 For the general-payoff setting in the Stackelberg-up case and under the
baseline and additional assumptions, Propositions 4, 5 and 6 all hold.

Thus, when the additional assumptions are added to the baseline assumptions, we are able
to construct an equilibrium in which Firm 1 pools at the generalized Stackelberg action,
qgs1 (r). In addition, we can show that qL1 (R) ≥ qN1 in any equilibrium, where q

L
1 (R) = qN1

with both types of Firm 1 making πN1 in any separating equilibrium.
We also show in Appendix B that the results extend naturally for the Stackelberg-down

case as well.
46For the quantity-game setting, recall that we define q1 as the lowest Firm 1 quantity that induces a

best-response output of zero from Firm 2. If b = 1 and qL1 = q1, then a higher value for q
L
1 would have

no impact on Firm 2’s quantity nor therefore on the flexible Firm 1’s payoff. We thus find it convenient
to define Q1 ≡ [0, q1).
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Proposition 13 For the general-payoff setting in the Stackelberg-down case and under
the baseline and additional assumptions, Propositions 4 and 5 both hold. Proposition 6
now holds with a reversed inequality: in any equilibrium, qL1 (R) ≤ qN1 .

Our last step is to establish conditions for the general-payoff setting under which
Proposition 8 holds so that the Nash pooling equilibrium outcome is the only refined
pooling equilibrium outcome. The extra condition that we require is a single-crossing
property that is captured in the following assumption:

Definition 8 For the general-payoff setting, we assume that the following single-crossing
property holds:

1. For the Stackelberg-up case where qgs1 (b) ∈ (qN1 , q1) for all b ∈ (0, 1], suppose qL1 (F ) ∈
(qN1 , q1) and let q

L
1 = qL1 (F )−ε > qN1 for ε > 0. If b′ ∈ (r, 1] exists such that πF (qL1 (F ), r) =

πF (qL1 , b
′), then πR(qL1 , b

′) > πR(qL1 (F ), r).

2. For the Stackelberg-down case where qgs1 (b) ∈ [0, qN1 ) for all b ∈ (0, 1], suppose qL1 (F ) ∈
[0, qN1 ) and let qL1 = qL1 (F )+ε < qN1 for ε > 0. If b′ ∈ (r, 1] exists such that πF (qL1 (F ), r) =

πF (qL1 , b
′), then πR(qL1 , b

′) > πR(qL1 (F ), r).

To interpret the single-crossing property, consider first the Stackelberg-up case and
recall the quantity-game setting. For that setting, if b = r and the leader quantity exceeds
the Nash output and is dropped slightly, then Firm 2’s Nash quantity rises. To keep Firm
2’s quantity fixed, an offsetting increase in the belief is required, with b′ > r defining the
required increase. A flexible Firm 1 then is indifferent to the described change, but a
resolute Firm 1 gains, since the resolute Firm 1 gains from lowering its leader quantity to
a level closer to its best-response level. The single-crossing-property assumption captures
these relationships in terms of the general payoff functions. The Stackelberg-down case
can be interpreted similarly for a situation in which, by choosing qL1 (F ) < qN1 , the resolute
Firm 1 commits to an action below its best-response.
In Appendix B, we prove our final general proposition.

Proposition 14 For the general-payoff setting in the Stackelberg-up and Stackelberg-
down cases and under the baseline and corresponding additional and single-crossing-
property assumptions, Proposition 8 holds.

Thus, for both the Stackelberg-up and Stackelberg-down cases, when the corresponding
assumptions identified above all hold, the Nash pooling equilibrium outcome is the unique
refined pooling equilibrium outcome. We note that the additional and single-crossing
assumptions take different forms for the Stackelberg-up and Stackelberg-down cases, as
indicated above.
With these findings in hand, we may now extend Corollary 2 to the general-payoff

setting as follows:
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Corollary 3 For the general-payoff setting in the Stackelberg-up and Stackelberg-down
cases and under the baseline and corresponding additional and single-crossing-property
assumptions, refined equilibria exist, and in any refined equilibrium qL1 (R) = qN1 and thus
Π1(R) = Π1(F ) = πN1 .

Thus, for both the Stackelberg-up and Stackelberg-down cases, when the corresponding
assumptions identified above all hold, the resolute Firm 1 sets its leader action equal to
its Nash action, and as a consequence Firm 1 earns its Nash payoff whether it is resolute
or flexible.

6.2 Applications

The general-payoff setting enables us to identify driving forces in the analysis but is
abstract and explicitly models only the leader action of Firm 1. While the flexible Firm
1’s payoffs are treated, the final action selected by the flexible Firm 1 is suppressed
in the general-payoff setting. Likewise, any action by Firm 2 is also suppressed. The
quantity-game setting analyzed previously provides one fully specified model with which
to interpret the analysis of the Stackelberg-up case. We now show how the propositions
for the general-payoff setting can be easily used for applications with quadratic payoffs.
Quadratic payoffs are convenient since they enable us to derive closed-form solutions for
πF (qL1 , b) and π

R(qL1 , b), but of course the results apply more generally.
To begin, we return to the quantity-model setting and now impose linear demand and

costs. As previously noted, this game fits in the Stackelberg-up case. Next, we consider
a monetary-policy model and show that this model fits into the Stackelberg-down case.
For each application, we use our results for the general-payoff setting and show that the
refined equilibrium generates Nash payoffs, even when the prior probability is high that
the first-mover has resolve.

6.2.1 Stackelberg-up: A simple quantity-game setting

Consider the quantity-game setting as analyzed in Sections 3-5, but assume now that
demand and costs take linear forms so that the profit functions are quadratic. Specifically,
assume that the market price P is determined as P (X) = α− βX, where X ≡ q1 + q2 is
the aggregate quantity in the market when Firm 1 produces q1 units and Firm 2 produces
q2 units. Assume further that the constant unit cost for production is c1 for Firm 1 and
c2 for Firm 2. For i, j = 1, 2 with i 6= j, we impose the parameter restrictions that α > 0,

β > 0 and ci ≥ 0 where α/β > ci, α− 2ci + cj > 0 and α + 2c1 − 3c2 > 0.
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The profit functions then take the following form:

π1(q1, q2) = [α− β(q1 + q2)− c1]q1
π2(q1, q2) = [α− β(q1 + q2)− c2]q2.

The quantity space for Firm i is Qi = [0, qi) where qi = (α−cj)/β for i, j = 1, 2 with i 6= j.

The Nash output levels and Nash profit levels can be calculated as qNi = (α−2ci+cj)/(3β)

and πNi = (α− 2ci + cj)
2/(9β), where qNi ∈ (0, qi) and i, j = 1, 2 with i 6= j.

For a given leader quantity qL1 ∈ Qi and belief b ∈ [0, 1], the period-2 equilibrium
quantities are denoted as q∗1(q

L
1 , b) and q

∗
2(q

L
1 , b), where q

∗
1(q

L
1 , b)maximizes π1(q1, q

∗
2(q

L
1 , b))

and where q∗2(q
L
1 , b) maximizes b · π2(qL1 , q2) + (1− b) · π2(q∗1(qL1 , b), q2). The solutions are

unique and take the following form:

q∗1(q
L
1 , b) =

α− 2c1 + c2 + bβqL1
β(3 + b)

q∗2(q
L
1 , b) =

α− 2c2 + c1 + b(α− c1 − 2βqL1 )

β(3 + b)
,

where q∗i (q
L
1 , b) ∈ (0, qi). The flexible Firm 1’s payoffis thus π

F (qL1 , b) = π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b)),

while the resolute Firm 1’s payoff is πR(qL1 , b) = π1(q
L
1 , q

∗
2(q

L
1 , b)). For the simple linear

model considered here, these payoffs take the following form:

πF (qL1 , b) = (
α− 2c1 + c2 + bβqL1

3 + b
)2

1

β

πR(qL1 , b) = (
2(α− 2c1 + c2)− β(3− b)qL1

3 + b
)qL1 .

With the payoffs now defined, we can easily check whether the baseline, additional and
single-crossing-property assumptions hold.
Straightforward calculations confirm that the baseline assumptions hold. We also find

that the generalized Stackelberg solution takes the form qgs1 (b) = 3qN1 /(3−b), from which it
follows that qgs1 (b) > qN1 for b > 0. Thus, the model belongs to the Stackelberg-up case. It
is direct to verify that the model satisfies the additional assumptions for the Stackelberg-
up case. We note that qgs1 (b) is increasing and that qgs1 (1) < q1, since α + 2c1 − 3c2 > 0.

Finally, as we show in Appendix C, it is direct to confirm that the single-crossing-property
for the Stackelberg-up case holds as well. Referring to Corollary 3, we conclude that, for
this standard linear model of duopolistic quantity competition, refined equilibria exist,
and in any refined equilibrium qL1 (R) = qN1 and thus Π1(R) = Π1(F ) = πN1 .

More generally, the Stackelberg-up case can be associated with strategic settings in
which best-response functions are decreasing and a higher action generates a negative
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cross-firm externality, as in the setting just analyzed, and also in which best-response
functions are increasing and a higher action generates a positive cross-firm externality.
As discussed in the Introduction, other examples of the former setting include certain
price-game settings among firms selling complementary goods and also settings in which
cost-reducing investments are selected prior to various oligopoly interactions. An exam-
ple of the latter kind of setting occurs when two firms occupy opposite endpoints of the
Hotelling line and set prices for their horizontally differentiated products. For an appropri-
ately specified model, we could illustrate the application of our results for Stackelberg-up
settings of this kind as well.

6.2.2 Stackelberg-down: A simple monetary-policy game

We consider next a monetary-policy game, in which a government wishes to commit to
zero inflation but is tempted to surprise the market with inflation that exceeds expec-
tations. As discussed below, in the Nash equilibrium of the game without commitment,
the government selects a positive rate of inflation; by contrast, if the government has
the ability to make a commitment, then it commits to zero inflation and enjoys a higher
payoff. We now describe the monetary-policy game and embed this application into our
general-payoff setting for the reduced-form game.
Barro and Gordon (1983) and Backus and Driffi ll (1985) offer formulations of the

monetary-policy game. They assume the government has the following utility function:
ug(x, x

e) = −1
2
αx2+β(x−xe), where x and xe are actual and expected inflation and where

the public chooses the expected inflation rate so as to maximize up(x, xe) = −(x − xe)2.
In other words, the public resists being fooled about inflation. In the simultaneous-move
game, the government chooses x to maximize ug(x, xe) at the same time that the public
selects xe to maximize up(x, xe). The Nash equilibrium of the simultaneous-move game
has x = β/α = xe. If instead the government could credibly commit to x before the public
forms its expectations, then the resulting Stackelberg solution entails x = 0 = xe and thus
higher payoffs for the government.
To put this game into the general-payoff setting as developed above, we imagine a

government that announces a rate of inflation, qL1 , while being privately informed as to
whether it has resolve or is flexible. For a government with resolve, the announcement
is fully credible, and the inflation rate of qL1 is delivered. By contrast, for a flexible
government, a rate of inflation is selected as the public forms its expectation, and that
rate is not constrained by the announced rate, qL1 . The public’s “choice”of a rational belief
about the expected rate of inflation is captured in our framework by the requirement that
the belief function, b(qL1 ), is consistent with Bayes’rule along the equilibrium path and
that the public correctly forecasts the equilibrium choice of a flexible government.
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Formally, we translate the monetary-policy setting into our framework as follows:

πR(qL1 , b) = −1

2
α(qL1 )2 + β(qL1 − Eq1(qL1 , b))

πF (qL1 , b) = −1

2
α(q∗1(q

L
1 , b))

2 + β(q∗1(q
L
1 , b)− Eq1(qL1 , b))

where Eq1(qL1 , b) ≡ b · qL1 + (1− b) · q∗1(qL1 , b) and

q∗1(q
L
1 , b) = arg max

q1∈Q1
−1

2
α(q1)

2 + β(q1 − Eq1(qL1 , b)),

with Q1 ≡ [0, q1) and where q1 > β/α.

It is direct to confirm that q∗1(q
L
1 , b) = β/α; thus, q∗1(q

L
1 , b) here is independent of

Eq1(q
L
1 , b) and hence q

L
1 and b. We thus define q

N
1 = β/α and πN1 = −α(qN1 )2/2, where

qN1 ∈ (0, q1). Using Eq1(q
L
1 , b) = b · qL1 + (1− b) · qN1 , we represent the payoffs as follows:

πR(qL1 , b) = −1

2
α(qL1 )2 + β(1− b)(qL1 − qN1 )

πF (qL1 , b) = −1

2
α(qN1 )2 + βb(qN1 − qL1 ).

With the payoffs now defined, we can easily check whether the baseline, additional and
single-crossing-property assumptions hold.
Straightforward calculations confirm that the baseline assumptions hold. The general-

ized Stackelberg solution, qgs1 (b), maximizes πR(qL1 , b) and is given as q
gs
1 (b) = β(1− b)/α,

where clearly qgs1 (b) < qN1 for b > 0. We note that qgs1 (b) is decreasing with qgs1 (1) = 0

as anticipated. Thus, qgs1 (b) ∈ [0, qN1 ) for all b ∈ (0, 1]. Building from these observations,
it is direct to show that the monetary-policy game satisfies the additional assumptions
for the Stackelberg-down case. Finally, as shown in Appendix C, it is direct to confirm
that the single-crossing-property for the Stackelberg-down case holds as well. Referring
to Corollary 3, we conclude that, for the monetary-policy game, refined equilibria exist,
and in any refined equilibrium qL1 (R) = qN1 and thus Π1(R) = Π1(F ) = πN1 .
Returning to the duopoly context, we note that the Stackelberg-down case also can

be associated with strategic settings in which best-response functions are decreasing and
a higher action generates a positive cross-firm externality, and in which best-response
functions are increasing and a higher action generates a negative cross-firm externality.
In the Supplementary Appendix, we illustrate the former setting. We consider there a
modified quantity-game setting in which each firm enjoys as well a positive externality
when the aggregate industry quantity increases, where this externality is captured in a
simple additive way and could correspond to the beneficial effects of higher industry output
on future demand or costs or the regulatory environment. This setting has decreasing
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best-response functions and, when the externality associated with industry output is
suffi ciently great, is also characterized by a positive cross-firm externality. We show
that this application fits into the Stackelberg-down case and that our results again apply.

7 Private information and the probability of resolve

In this section, we briefly consider an alternative model in which Firm 1 is privately
informed about the probability that it will have resolve and thus be constrained to set
is final quantity equal to its announced leader quantity, qL1 . The novel feature captured
by this extension is that, when Firm 1 selects its leader quantity, Firm 1 itself may be
uncertain about whether it will be constrained by this selection.
The game begins when Nature selects the probability that Firm 1 will have resolve.

Firm 1 is privately informed of this probability and selects its leader quantity, qL1 . After
making this selection, Firm 1 observes the realization of a signal, indicating whether Firm
1 is resolved or flexible, where the probabilities of each realization are determined by
Firm 1’s true type (i.e., the probability of resolve, as selected by Nature). As in our
main model, a resolute Firm 1 must set its final output equal to its leader quantity, but
a flexible Firm 1 is unconstrained and sets its period-2 equilibrium quantity as a best
response to Firm 2’s period-2 equilibrium quantity, which is chosen simultaneously. Firm
2 perfectly observes the leader quantity but does not observe the resolve probability or
the signal realization.
Two cases arise, depending on whether the set of possible resolve probabilities selected

by Nature includes zero. In the first case, zero is not included. To illustrate this case, we
can consider a scenario in which Firm 1 is privately informed as to whether it has resolve
with low or high probability, where the low probability is still positive. For this case, it
is straightforward to see that the Nash pooling equilibrium outcome is no longer feasible:
Firm 1 would gain by deviating from qL1 = qN1 to at least a slightly higher leader quantity,
since then Firm 2 reduces its period-2 equilibrium quantity somewhat, even if it believes
that Firm 1 has resolve with low probability.
In the second case, while Firm 1 may have any of potentially many probability types,

there is a positive probability that Firm 1 is privately informed that it has resolve with
probability zero. For example, Nature may select a resolve probability ρ from a large set
of possible values, where the prior probability that Nature selects ρ = 0 is positive but
could be arbitrarily small. In this case, the Nash pooling equilibrium remains feasible,
since Firm 2 can believe that ρ = 0, that is, that Firm 1 is flexible, upon observing any
deviation. Furthermore, the Nash pooling equilibrium is also refined, since the flexible
(i.e., ρ = 0) type of Firm 1 is the type that is always able to best respond against Firm 2
and thus that gains from the deviation under the largest set of possible beliefs.
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8 Conclusion

This paper considers a model with a leader and follower in which the leader is privately
informed about its resolve to follow through on a proposed course of action. The leader’s
initial or promised action, referred to as the leader action, may then play both commitment
and signaling roles. After putting the game in a reduced form where the leader’s payoffs
are expressed as a function of the leader action and the follower’s belief, we show that a
Nash pooling equilibrium exists in which, whether the leader is resolute or flexible, the
leader action is set equal to the Nash action that the leader would choose in a pure-strategy
equilibrium of the associated simultaneous-move game. Motivated by the D1 refinement
for signaling games, we define a refinement for the reduced-form game and show that the
Nash pooling equilibrium outcome is the unique refined pooling equilibrium outcome. We
show further that in any refined equilibrium the final actions are the Nash actions of the
simultaneous-move game, with each player thus earning Nash payoffs. These findings hold
even when the leader is almost certain to have resolve. The arguments are first developed
in a strategic setting motivated by the Cournot quantity game. We then identify suffi cient
conditions on general reduced-form payoff functions and provide applications.
The findings here suggest that the strategic value of commitment may be diffi cult to

achieve in a one-time interaction when the leader is privately informed about its resolve
and there is even a small chance that the leader lacks resolve. At a broad level, this work
thus may offer some additional support for the view that the strategic value of commitment
is most readily achieved when reputational or other costs are associated with a failure to
maintain an initial action or follow through on a promise. Under the reputational view,
commitment power accrues over time to a privately informed leader when the leader has
the opportunity to develop a reputation for maintaining initial actions and/or carrying
through on promises. A related view is that legal or other costs may be associated with
misleading initial actions of unkept promises.47 Such costs could also enhance the leader’s
ability to realize the strategic benefits of commitment.
The analysis can be extended in a variety of directions. We discuss above an extension

in which the leader is privately informed about the probability that it will have resolve. In
addition, the analysis could be easily extended to allow the leader the choice of whether
or not to reveal the leader action. The final quantities and payoffs associated with the
Nash pooling equilibrium could then also be achieved in a “no-reveal pooling equilibrium”
in which both types of leader choose not to reveal.48 Finally, and more speculatively, the
results reported here may suggest possible experimental studies.

47See Kartik (2009) for an analysis of strategic communication when lying is costly.
48Just as in the construction of the Nash pooling equilibrium, any deviation would then be associated

with the flexible type, which ensures in turn that no deviation is appealing.
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9 Appendix A

We prove here Lemmas 1, 2 and 3 and also Propositions 1, 2, 3, 4, 6 and 9.

Proof of Lemma 1. Suppose that qL1 > qN1 . Assume to the contrary that q
∗
2(q

L
1 , b) ≥ qN2 .

Since qN1 = qbr1 (qN2 ), q∗1(q
L
1 , b) = qbr1 (q∗2(q

L
1 , b)) by (9), and best-response functions are

decreasing, it then follows that q∗1(q
L
1 , b) ≤ qN1 . Given the stability of the best-response

functions, we have that qbr2 (q∗1(q
L
1 , b)) ≤ q∗2(q

L
1 , b). Further, since best-response functions

are decreasing and q∗1(q
L
1 , b) ≤ qN1 < qL1 , we may conclude that q

br
2 (qL1 ) < qbr2 (qN1 ) ≤

qbr2 (q∗1(q
L
1 , b)) ≤ q∗2(q

L
1 , b). Thus, if Firm 2 were instead to select a period-2 quantity

slightly lower than q∗2(q
L
1 , b), then it would suffer at most a second-order loss in profit if

Firm 1 is flexible and chooses q∗1(q
L
1 , b) and it would enjoy a first-order gain in profit if

Firm 1 is resolute and produces qL1 . Given b ∈ (0, 1), Firm 2 thus gains from the deviation,
and we thus have a contradiction. We conclude that q∗2(q

L
1 , b) < qN2 . Since q

N
1 = qbr1 (qN2 ),

q∗1(q
L
1 , b) = qbr1 (q∗2(q

L
1 , b)) by (9), and best-response functions are decreasing, it then follows

that q∗1(q
L
1 , b) > qN1 .

Next, suppose that qL1 > qN1 , and assume to the contrary that q
∗
2(q

L
1 , b) ≤ qbr2 (qL1 ).

Given qL1 > qN1 , it follows from the negative slope of the Firm-2 best-response function that
q∗2(q

L
1 , b) ≤ qbr2 (qL1 ) < qbr2 (qN1 ) = qN2 . Using (9) and that Firm 1’s best-response function is

decreasing, we thus have that q∗1(q
L
1 , b) = qbr1 (q∗2(q

L
1 , b)) > qbr1 (qN2 ) = qN1 . By the stability

of the best-response functions, we thus know that q∗2(q
L
1 , b) < qbr2 (q∗1(q

L
1 , b)). Thus, if Firm

2 were instead to select a period-2 quantity slightly higher than q∗2(q
L
1 , b), then it would

suffer at most a second-order loss in profit if Firm 1 is resolute and produces qL1 and and
it would enjoy a first-order gain in profit if Firm 1 is flexible and chooses q∗1(q

L
1 , b). Given

b ∈ (0, 1), Firm 2 thus gains from the deviation, and we thus have a contradiction. We
conclude that q∗2(q

L
1 , b) > qbr2 (qL1 ). Since Firm 2’s best-response function is decreasing, we

may define q′1 ∈ (qN1 , q
L
1 ) such that q∗2(q

L
1 , b) = qbr2 (q′1). Using the stability of the best-

response functions and q∗1(q
L
1 , b) = qbr1 (q∗2(q

L
1 , b)), we then have that q

∗
1(q

L
1 , b) ∈ (qN1 , q

′
1),

and so we may conclude that q∗1(q
L
1 , b) < qL1 .

The proof for the case in which qL1 < qN1 is analogous.

Proof of Lemma 2. As observed in (10), when b = 1, q∗1(q
L
1 , 1) = qbr1 (qbr2 (qL1 )) and

q∗2(q
L
1 , 1) = qbr2 (qL1 ). Thus, if qL1 > qN1 , then q

∗
2(q

L
1 , 1) = qbr2 (qL1 ) < qbr2 (qN1 ) = qN2 , where

we use that Firm 2’s best-response function is decreasing. It follows that q∗1(q
L
1 , 1) =

qbr1 (qbr2 (qL1 )) > qbr1 (qN2 ) = qN1 , where we use that Firm 1’s best-response function is de-
creasing. Finally, qL1 > q∗1(q

L
1 , 1) follows from the stability of the best-response functions,

given that q∗1(q
L
1 , 1) = qbr1 (qbr2 (qL1 )) and qL1 > qN1 .

Proof of Lemma 3. Suppose that qL1 = qN1 . Assume to the contrary that q
∗
2(q

N
1 , b) < qN2 .

Since qN1 = qbr1 (qN2 ), q∗1(q
N
1 , b) = qbr1 (q∗2(q

N
1 , b)) by (9), and best-response functions are
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decreasing, it then follows that q∗1(q
N
1 , b) > qN1 . Given the stability of the best-response

functions, we have that qbr2 (q∗1(q
N
1 , b)) > q∗2(q

N
1 , b). Further, since best-response functions

are decreasing and q∗1(q
N
1 , b) > qN1 , we may conclude that q

br
2 (qN1 ) > qbr2 (q∗1(q

N
1 , b)) >

q∗2(q
N
1 , b). Thus, if Firm 2 were instead to select a period-2 quantity slightly higher than

q∗2(q
N
1 , b), then it would earn greater profit whether Firm 1 is flexible and chooses q

∗
1(q

N
1 , b)

or is resolute and produces qN1 . We thus have a contradiction. Since the case in which
q∗2(q

N
1 , b) > qN2 may be handled similarly, we may conclude that q

∗
2(q

N
1 , b) = qN2 . Finally,

with q∗1(q
L
1 , b) = qbr1 (q∗2(q

L
1 , b)) following from (9), we may conclude that q∗1(q

N
1 , b) = qN1 .

Proof of Proposition 1. Consider first the possibility of a pooling equilibrium in which
qL1 (R) = qN1 . In this case, we know from Lemma 3 that Π1(F ) = Π1(R) = πN1 . Consider
second the possibility a pooling equilibrium in which qL1 (R) 6= qN1 . Firm 2 then selects
q∗2(q

L
1 (R), r). We argue now that qL1 (R) 6= q∗1(q

L
1 (R), r). Assume to the contrary that

qL1 (R) = q∗1(q
L
1 (R), r). In this case, q∗2(q

L
1 (R), r) must be a best response to q∗1(q

L
1 (R), r).

Since q∗1(q
L
1 (R), r) is a best response to q∗2(q

L
1 (R), r), it follows that q∗1(q

L
1 (R), r) = qN1 ,

a contradiction. We conclude that qL1 (R) 6= q∗1(q
L
1 (R), r). Since q∗1(q

L
1 (R), r) is a best

response to q∗2(q
L
1 (R), r), and qL1 (R) is thus not a best response to q∗2(q

L
1 (R), r), we conclude

that Π1(F ) > Π1(R).

Proof of Proposition 2. Suppose qL1 (R) = qL1 (F ) = qN1 . We then have that b(q
N
1 ) = r.

Let us now specify that b(qL1 ) = 0 for all qL1 6= qN1 . Thus, since q
∗
2(q

L
1 , 0) = qN2 , Firm 2

selects the period-2 quantity qN2 whether Firm 1 selects a leader quantity of q
N
1 or q

L
1 6= qN1 .

A flexible Firm 1 thus enjoys the payoff πN1 regardless and has no incentive to deviate.
A resolute Firm 1 prefers a leader quantity of qN1 to qL1 6= qN1 , since given the beliefs it
cannot alter Firm 2’s period-2 quantity.

Proof of Proposition 3. We know from Proposition 2 that the Nash pooling equilibrium
exists for any value of r ∈ (0, 1) and that the Nash pooling equilibrium outcome is
thus r-robust. Consider now any qL1 6= qN1 and hypothesize a pooling equilibrium such
that qL1 (R) = qL1 (F ) = qL1 . With q

L
1 fixed, let us now consider lower values for r. As

r approaches 0, Firm 2’s belief b(qL1 ) = r likewise approaches 0; hence, the period-2
equilibrium quantity choices, q∗1(q

L
1 , r) and q

∗
2(q

L
1 , r), approach the Nash output vector,

(qN1 , q
N
2 ), as r approaches 0. For r suffi ciently close to 0, it thus follows that the resolute

Firm 1 obtains below-Nash profits by selecting qL1 , which contradicts Corollary 1.

Proof of Proposition 4. Suppose qL1 (R) = qL1 (F ) = qgs1 (r). We then have that
b(qgs1 (r)) = r. Let us now specify for any deviant leader quantity qL1 6= qgs1 (r) that
b(qL1 ) = 0. We show first that the resolute Firm 1 gains more from deviating to qN1
than by deviating to any qL1 < qN1 . To see the argument, recall that q

N
2 = q∗2(q

L
1 , 0) and
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observe for any qL1 < qN1 that

π1(q
L
1 , q

∗
2(q

L
1 , 0)) = π1(q

L
1 , q

N
2 ) < π1(q

N
1 , q

N
2 ) = π1(q

N
1 , q

∗
2(q

N
1 , 0))

where the inequality follows since qL1 < qN1 . Thus, to confirm that the resolute Firm 1
cannot gain from a deviant leader quantity qL1 6= qgs1 (r), it is suffi cient to consider qL1 ≥ qN1 .
Next, suppose that the resolute Firm 1 deviates to qL1 = qN1 . By Lemma 3, we have that

(q∗1(q
N
1 , 0), q∗2(q

N
1 , 0)) = (qN1 , q

N
2 ), and so the profit π1(qN1 , q

N
2 ) is earned under deviation to

qL1 = qN1 . This profit is also available in the generalized Stackelberg problem; however, as
captured in (18), the solution instead is qgs1 (r) > qN1 . We thus conclude that the resolute
Firm 1 also cannot gain by deviating to qL1 = qN1 .
Finally, suppose that the resolute Firm 1 selects qL1 > qN1 where qL1 6= qgs1 (r). Since

q∗2(q
L
1 , 0) = qN2 , the resolute Firm 1 earns π1(qL1 , q

∗
2(q

L
1 , 0)) after deviating to qL1 . We can

verify that the resolute Firm 1 loses from a deviation to qL1 > qN1 where q
L
1 6= qgs1 (r), since

π1(q
gs
1 (r), q∗2(q

gs
1 (r), r)) > π1(q

L
1 , q

∗
2(q

L
1 , r)) > π1(q

L
1 , q

∗
2(q

L
1 , 0)),

where the first inequality follows from the definition of qgs1 (r) and the associated second-
order condition. To confirm the second inequality, we note that Lemma 1 ensures that
qL1 > q∗1(q

L
1 , b) for any b ∈ (0, 1). It thus follows from (12) that q∗2(q

L
1 , b) rises as b falls

from r to lower positive values. Correspondingly, (15) ensures that π1(qL1 , q
∗
2(q

L
1 , b)) falls

as b falls from r to lower positive values. Finally, the inequality is maintained as b reaches
0 by continuity.
The remaining task is to show that the flexible Firm 1 also does not gain from a

deviation. Given that b(qL1 ) = 0 for qL1 6= qgs1 (r), any deviation induces the output of
q∗2(q

L
1 , 0) = qN2 for Firm 2. The flexible Firm 1 then best responds, earning thereby πN1

from any deviation. The flexible Firm 1’s equilibrium payoff exceeds that of the resolute
Firm 1, since the flexible Firm 1 can best respond against q∗2(q

gs
1 (r), r) and qgs1 (r) > qN1 by

(18). Since as shown above the resolute Firm 1 does not gain from deviating to qL1 = qN1
and generating thereby the profit πN1 , it follows now that the flexible Firm 1 does not gain
from deviating to any qL1 6= qgs1 (r) under the given belief specification.

Proof of Proposition 6. Assume to the contrary that an equilibrium exists in which
qL1 (R) < qN1 . We establish in Proposition 5 that q

L
1 (R) = qN1 in any separating equilibrium.

Suppose then that we have a pooling equilibrium. Using b(qL1 (R)) = r ∈ (0, 1) and Lemma
1, it then follows that qL1 (R) < q∗1(q

L
1 (R), r) < qN1 and qN2 < q∗2(q

L
1 (R), r) < qbr2 (qL1 (R)).

51



The profit to the resolute Firm 1 thus satisfies

Π1(R) = π1(q
L
1 (R), q∗2(q

L
1 (R), r)) < π1(q

br
1 (q∗2(q

L
1 (R), r)), q∗2(q

L
1 (R), r))

< π1(q
br
1 (qN2 ), qN2 ) = π1(q

N
1 , q

N
2 ) = πN1

where the first inequality follows since qL1 (R) < q∗1(q
L
1 (R), r) = qbr1 (q∗2(q

L
1 (R), r) by (9) and

the second inequality follows directly from qN2 < q∗2(q
L
1 (R), r) and (16). We thus have a

contradiction to Corollary 1.

Proof that (33) holds. Observe from (28) and (30) that

d∆R(qL1 , b)

db
− d∆F (qL1 , b)

db
= [

∂π1(q
L
1 , q

∗
2(q

L
1 , b))

∂q2
− ∂π1(q

∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))

∂q2
]
∂q∗2(q

L
1 , b)

∂b

We know that ∂q∗2(q
L
1 ,b)

∂b
< 0 for b ∈ (0, 1) by qL1 = qL1 (R)− ε and (24). Next, we have that

∂π1(q
L
1 , q

∗
2(q

L
1 , b))

∂q2
− ∂π1(q

∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))

∂q2
=

∫ qL1

q∗1(q
L
1 ,b)

∂2π1(q1, q
∗
2(q

L
1 , b))

∂q1∂q2
dq1 < 0,

where the inequality follows from (2) and qL1 = qL1 (R)− ε > q∗1(q
L
1 (R), b).

Proof of Proposition 9. Consider a pooling equilibrium in which qL1 (R) = qL1 (F ) = qN1 ,
b(qN1 ) = r, and, for some qL1 6= qN1 , b(q

L
1 ) > 0. For this value of qL1 , we now examine

the gains from deviation for the different types of Firm 1 as different values for b are
entertained. As argued in Section 5.2, for the belief b = 0, we have that ∆R(qL1 , 0) < 0 =

∆F (qL1 , 0). We may thus conclude once again that (23) holds. Next, suppose that we find
b > 0 such that ∆R(qL1 , b) ≥ 0. As shown in the inequality chain from Section 5.2, it then
follows that

0 ≤ ∆R(qL1 , b) = π1(q
L
1 , q

∗
2(q

L
1 , b))− Π1(R)

= π1(q
L
1 , q

∗
2(q

L
1 , b))− Π1(F )

< π1(q
∗
1(q

L
1 , b), q

∗
2(q

L
1 , b))− Π1(F ) = ∆F (qL1 , b),

where the second equality utilizes Π1(F ) = Π1(R) at a pooling equilibrium in which
qL1 (R) = qL1 (F ) = qN1 and the strict inequality follows since q∗1(q

L
1 , b) = qbr1 (q∗2(q

L
1 , b)) by

(9) and qL1 6= q∗1(q
L
1 , b) by Lemmas 1 and 2. Thus, given q

L
1 6= qN1 , we conclude that

For b > 0, if b ∈ DR(qL1 ) ∪DR
0 (qL1 ), then b ∈ DF (qL1 ). (36)

Given that 0 /∈ DR(qL1 )∪DR
0 (qL1 ) and (36), we can invoke the refinement once we complete

a final step and show that DF (qL1 ) is non-empty.
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To complete this final step, suppose that qL1 > qN1 . Consider b = ε for ε > 0 and small.
Referring to Lemma 1, we thus know that qL1 > q∗1(q

L
1 , ε) > qN1 and qN2 > q∗2(q

L
1 , ε) >

qbr2 (qL1 ). It follows that

∆F (qL1 , ε) = π1(q
∗
1(q

L
1 , ε), q

∗
2(q

L
1 , ε))− Π1(F )

= π1(q
∗
1(q

L
1 , ε), q

∗
2(q

L
1 , ε))− π1(q∗1(qL1 , 0), q∗2(q

L
1 , 0))

> 0,

where the inequality follows from (16) since q∗1(q
L
1 , ε) is a best response to q∗2(q

L
1 , ε),

q∗1(q
L
1 , 0) is a best response to q∗2(q

L
1 , 0), and q∗2(q

L
1 , ε) < q∗2(q

L
1 , 0) under (12) using conti-

nuity and given qL1 > qN1 . Thus, for q
L
1 > qN1 ,

b = ε ∈ DF (qL1 ). (37)

Given (36) and (37), we may now invoke (22) and draw the following conclusion: for
any pooling equilibrium in which qL1 (R) = qL1 (F ) = qN1 , the equilibrium is refined only if
b(qL1 ) = 0 for any qL1 > qN1 .
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Finally, we consider qL1 < qN1 . Such a deviation cannot generate a gain for either
type of Firm 1, regardless of the specification of beliefs, so the specification of beliefs for
such a deviant leader quantity is immaterial. To complete the proof, we note that, since
∆F (qL1 , 0) = 0 > ∆R(qL1 , 0) and since ∆R(qL1 , b) < ∆F (qL1 , b) < 0 for b > 0, the sets DF (qL1 )

and DR(qL1 ) are empty when qL1 < qN1 . Referring to (22), we see that the refinement then
has no bite. Hence, for any pooling equilibrium in which qL1 (R) = qL1 (F ) = qN1 , the
refinement imposes no conditions on the belief function for qL1 < qN1 .

10 Appendix B

In this Appendix section, we prove Propositions 11, 12, 13 and 14.

Proof of Proposition 11. We begin with Corollary 1. Suppose to the contrary that
Π1(t) < πN1 for t = R or F . Since part 2 of the baseline assumption gives that πF (qN1 , b) =

πR(qN1 , b) = πN1 , it then must be that Firm 1 of type t selects qL1 (t) 6= qN1 . It follows that
Firm 1 of type t could gain by deviating to qL1 = qN1 and thereby receiving the payoff π

N
1 .

We consider next Proposition 1. For a pooling equilibrium, suppose first that qL1 (R) 6=
qN1 . Using part 3 of the baseline assumptions, we then know that Π1(F ) = πF (qL1 (R), r) >

πR(qL1 (R), r) = Π1(R). Suppose second that qL1 (R) = qN1 . We then know by part 2 of the
baseline assumptions that Π1(F ) = πF (qL1 (R), r) = πN1 = πR(qL1 (R), r) = Π1(R).

49Since ∆R(qL1 , 0) < 0 and ∆R(qL1 , b) is continuous, we also have that ∆R(qL1 , ε) < 0 for ε suffi ciently
small. Thus, for qL1 > qN1 , we can observe further that b = ε /∈ DR(qL1 ) ∪DR

0 (qL1 ) and b = ε ∈ DF (qL1 ).

53



To confirm Proposition 2, we establish the existence of the Nash pooling equilibrium:
qL1 (R) = qL1 (F ) = qN1 , b(q

N
1 ) = r and b(qL1 ) = 0 for all qL1 6= qN1 . Each type of Firm 1

then earns πN1 in equilibrium by part 2 of the baseline assumptions. If the flexible Firm 1
were to deviate to qL1 6= qN1 , then it would receive π

F (qL1 , 0) = πN1 and thus experience no
gain by part 4 of the baseline assumptions. If the resolute Firm 1 were to deviate, then
it would receive πR(qL1 , 0) < πN1 and thus experience a loss since part 1 of the baseline
assumptions ensures that πR(qL1 , 0) < πR(qL1 , 0) = πN1 .
Consider now Proposition 3. We establish the existence of the Nash pooling equi-

librium in the preceding paragraph, and our proof holds for any r ∈ (0, 1). Thus, the
Nash pooling equilibrium outcome is r-robust. Consider now any pooling equilibrium
outcome such that qL1 (R) 6= qN1 . As r goes to 0, the payoffs in this pooling equilibrium for
a resolute Firm 1 approach πR(qL1 (R), 0) < πR(qL1 , 0) = πN1 , where the inequality again
follows from part 1 of the baseline assumptions. By continuity of the payoff functions,
for r suffi ciently small, πR(qL1 (R), r) < πN1 . Using part 2 of the baseline assumptions, it
follows that the resolute Firm 1 would deviate to qL1 = qN1 and thereby receive the payoff
πR(qN1 , b(q

N
1 )) = πN1 .

Finally, consider Proposition 7. For the Nash pooling equilibrium, we may use part 2
of our baseline assumptions to confirm that the equilibrium payoffs are Π1(R) = Π1(F ) =

πN1 . For any deviation q
L
1 6= qN1 , this equilibrium specifies that b(qL1 ) = 0. Using part 1

of the baseline assumptions, we observe that πR(qL1 , 0) < πR(qN1 , 0) = πN1 ; furthermore,
part 4 of the baseline assumptions gives πF (qL1 , 0) = πN1 . We conclude that b = 0 /∈
DR(qL1 ) ∪ DR

0 (qL1 ) and b = 0 ∈ DF
0 (qL1 ). We conclude that our specification of b(qL1 ) = 0

for all qL1 6= qN1 satisfies the refinement condition (22).

Proof of Proposition 12. To confirm Proposition 4, we specify a pooling equilibrium
in which qL1 (R) = qL1 (F ) = qgs1 (r), b(qgs1 (r)) = r and b(qL1 ) = 0 for all qL1 6= qgs1 (r). From
part 3 of the additional assumptions, we know that qgs1 (r) > qN1 . Consider the resolute
Firm 1. A deviation to any qL1 ≤ qN1 induces the belief b(qL1 ) = 0. By part 1 of the
baseline assumptions, the best such deviation for the resolute Firm 1 is qL1 = qN1 , which
delivers the payoff πR(qN1 , 0) = πN1 . But using part 3 of the additional assumptions and
part 2 of the baseline assumptions, we know πR(qgs1 (r), r) > πR(qN1 , r) = πN1 . Next, a
deviation to any qL1 > qN1 with q

L
1 6= qgs1 (r) likewise induces the belief b(qL1 ) = 0. We then

have that πR(qgs1 (r), r) > πR(qL1 , r) > πR(qL1 , 0), where the first (second) inequality follows
from part 3 (part 2) of the additional assumptions. Thus, the resolute Firm 1 loses from
any deviation. Consider the flexible Firm 1. Using qgs1 (r) > qN1 and part 3 of the baseline
assumptions, we know that πF (qgs1 (r), r) > πR(qgs1 (r), r). As just shown, πR(qgs1 (r), r) >

πR(qN1 , r) = πN1 . Thus, using part 4 of the baseline assumptions, π
F (qgs1 (r), r) > πN1 =

πF (qL1 , 0) for any qL1 6= qgs1 (r). Hence, the flexible Firm 1 loses from any deviation.
We consider next Proposition 5. Fix a separating equilibrium. We thus have qL1 (R) 6=

54



qL1 (F ) and b(qL1 (R)) = 1 > 0 = b(qL1 (F )). It follows from part 4 of the baseline assumptions
that Π1(F ) = πF (qL1 (F ), 0) = πN1 . A separating equilibrium can exist only if the flexible
Firm 1 does not gain from deviating to qL1 (R); thus, it must be that πN1 = πF (qL1 (F ), 0) ≥
πF (qL1 (R), 1). We next observe that πF (qL1 (F ), 0) = πF (qN1 , 0) = πF (qN1 , 1), where the first
(second) equality follows from part 4 (part 2) of our baseline assumptions. It now follows
that a separating equilibrium exists only if πF (qN1 , 1) ≥ πF (qL1 (R), 1). Using part 1 of the
additional assumptions with b = 1, we thus have that qN1 ≥ qL1 (R). Suppose qN1 > qL1 (R).
Then Π1(R) = πR(qL1 (R), 1) < πR(qN1 , 1) = πR(qN1 , b(q

N
1 )) = πN1 , where the inequality

follows given qL1 (R) < qN1 from part 3 of the additional assumptions with b = 1 and
where the second and third equalities follow from part 2 of the baseline assumptions. It
follows that the resolute Firm 1 would deviate to qL1 = qN1 . Thus, a separating equilibrium
can exist only if qL1 (R) = qN1 . It follows from part 2 of the baseline assumptions that
Π1(R) = πR(qL1 (R), 1) = πN1 .

Consider now Proposition 6. Assume to the contrary that an equilibrium exists in
which qL1 (R) < qN1 . By Proposition 5, the equilibrium must be a pooling equilibrium. By
part 3 of the baseline assumptions, we know πF (qL1 (R), r) > πR(qL1 (R), r) = Π1(R). We
also know from part 1 of the additional assumptions that πF (qL1 (R), r) < πF (qN1 , r) = πN1 ,
where the equality uses part 2 of the baseline assumptions. We thus have that Π1(R) <

πN1 , which contradicts Corollary 1.

Proof of Proposition 13. The proof is analogous to the proof of Proposition 12 and is
found in the Supplementary Appendix.

Proof of Proposition 14. Consider first the Stackelberg-up case. We know from
Proposition 6 that qL1 (R) ≥ qN1 . Thus, let us consider any pooling equilibrium such that
qL1 (R) = qL1 (F ) and qL1 (F ) > qN1 . The equilibrium payoff to Firm 1 of type t ∈ {F,R} is
then Π1(t) = πt(qL1 (F ), r). Pick qL1 = qL1 (R) − ε with ε > 0 and qL1 = qL1 (R) − ε > qN1 .
Define b′ by πF (qL1 , b

′) = πF (qL1 (F ), r). For ε small and using parts 1 and 2 of the additional
assumptions, we have that b′ ∈ (r, 1). Clearly, b′ ∈ DF

0 (qL1 ). From the single-crossing
property, we now have that πR(qL1 , b

′) > πR(qL1 (F ), r). Thus, b′ ∈ DR(qL1 ).

Using part 2 of the additional assumptions, we see that ∆F (qL1 , b) ≡ πF (qL1 , b)−Π1(F )

is increasing in b. Thus, DF (qL1 ) ∪ DF
0 (qL1 ) = {b|b ≥ b′}. Likewise, using part 2 of the

additional assumptions, we see that ∆R(qL1 , b) ≡ πR(qL1 , b)−Π1(R) is increasing in b. Since
∆R(qL1 , b

′) > 0, it follows that DR(qL1 ) includes {b|b ≥ b′}. We conclude that DF (qL1 ) ∪
DF
0 (qL1 ) v DR(qL1 ) and DR(qL1 ) /∈ ∅, and so the refinement requires that b(qL1 ) = 1. This

belief in turn induces the resolute Firm 1 to deviate, since b = 1 ∈ DR(qL1 ).

The proof for the Stackelberg-down case is analogous and is found in the Supplemen-
tary Appendix.
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11 Appendix C

We confirm here that the single-crosssing-property assumption holds for our applications.
To confirm that the simple quantity game satisfies the single-crossing property as

defined for the Stackelberg-up case, we note that the indifference equation πF (qL1 , b) =

πF (qL1 (F ), r) defines a function b = b(qL1 ) such that

db

dqL1
|πF =

b(3 + b)

3(qN1 − qL1 )
< 0

for b > 0 and qN1 < qL1 . As expected, the flexible Firm 1’s payoff is held constant exactly
when q∗2(q

L
1 , b) is held constant. We may now compute that

dπR(qL1 , b(q
L
1 ))

dqL1
=

6β(qN1 − qL1 )

3 + b
< 0

for qN1 < qL1 . Hence, if we start at (qL1 (F ), r) with qL1 (F ) > qN1 and b(q
L
1 (F )) = r and then

consider (qL1 , b) with q
L
1 = qL1 (F ) − ε > qN1 and b(qL1 ) = b′ ∈ (r′, 1) for ε > 0 suffi ciently

small, then

dπR(qL1 , b(q
L
1 )) =

6β(qL1 − qN1 )

3 + b
· ε > 0,

and so the single-crossing-property assumption holds for the Stackelberg-up case.
To confirm that the simple monetary-policy game satisfies the single-crossing-property

assumption as defined for the Stackelberg-down case, we note that the indifference equa-
tion πF (qL1 , b) = πF (qL1 (F ), r) defines a function b = b(qL1 ) such that

db

dqL1
|πF =

b

qN1 − qL1
> 0

for b > 0 and qN1 > qL1 . We may now compute that

dπR(qL1 , b(q
L
1 ))

dqL1
= α(qN1 − qL1 ) > 0

for qN1 > qL1 . Hence, if we start at (qL1 (F ), r) with qL1 (F ) ∈ [0, qN1 ) and b(qL1 (F )) = r

and then consider (qL1 , b) with q
L
1 = qL1 (F ) + ε < qN1 and b(qL1 ) = b′ ∈ (r′, 1) for ε > 0

suffi ciently small, then

dπR(qL1 , b(q
L
1 )) = α(qN1 − qL1 ) · ε > 0,

and so the single-crossing-property assumption holds for the Stackelberg-down case.
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Figure 1:  Period-2 equilibrium quantities for 0 < b < 1!
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Figure 2:  Gains from Deviation!
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Figure 3: Pooling equilibrium with "
q1  < q1(R) = q1(F) < q1 (r)  !
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Figure 4: Indifference Curves!
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